dloading7
码龄7年
关注
提问 私信
  • 博客:30,910
    30,910
    总访问量
  • 17
    原创
  • 1,036,138
    排名
  • 13
    粉丝
  • 0
    铁粉

个人简介:3D Computer Vision & Deep Learning on Point Clouds

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-03-21
博客简介:

dloading7的博客

查看详细资料
个人成就
  • 获得39次点赞
  • 内容获得71次评论
  • 获得127次收藏
  • 代码片获得206次分享
创作历程
  • 2篇
    2023年
  • 10篇
    2022年
  • 5篇
    2021年
成就勋章
TA的专栏
  • Registration_3DMatch
    4篇
  • Registration_ModelNet40
    2篇
  • Registration_Lidar
兴趣领域 设置
  • 人工智能
    图像处理
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

源码编译支持打开pcd格式的Cloudcompare

【代码】源码编译支持打开pcd格式的Cloudcompare。
原创
发布博客 2023.11.03 ·
247 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

解决编译opencv3.2.0时出现的网络连接错误

在编译opencv3.2.0 + opencv_contrib3.2.0时,会出现如vgg_generated_48.i等因为网络而下载失败的情况,这里可以在cmake时指定网络镜像解决以上问题。
原创
发布博客 2023.07.07 ·
265 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

A-LOAM代码解读

A-LOAM源码解读
原创
发布博客 2022.11.09 ·
2687 阅读 ·
7 点赞 ·
2 评论 ·
33 收藏

C++ opencv cv::Mat 相关注意事项

C++ opencv cv::Mat 相关注意事项
原创
发布博客 2022.10.16 ·
856 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux Matlab R2017a 安装

Linux Matlab R2017a 安装
原创
发布博客 2022.07.05 ·
355 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

(NIPS 21) CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration
原创
发布博客 2022.06.27 ·
1074 阅读 ·
2 点赞 ·
0 评论 ·
10 收藏

Distributed Training(Single Machine & Multi-GPU)

单机多卡分布式训练
原创
发布博客 2022.06.03 ·
330 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(CVPR 18) FoldingNet: Point Cloud Auto-encoder via Deep Grid Deformation

FoldingNet[1]提出了一种点云自编码器结构,属于自监督学习的范畴,可以将输入点云投影(即特征降维)至具有丰富语义信息的高维空间中,形成高维特征向量(文中用“codeword”指代),即编码过程。接着通过解码网络将高维特征向量恢复得到高维度的输入点云。如下图所示,对于input输入点云,首先经过特征编码形成codeword(不是图中的2D grid),接着进行两次folding操作,恢复得到与输入点云相似的输出点云:What is Folding Operation?作者在文中指出,从直觉.
原创
发布博客 2022.04.20 ·
4734 阅读 ·
1 点赞 ·
2 评论 ·
8 收藏

(TOG 19) DGCNN: Dynamic Graph CNN for Learning on Point Clouds

DGCNN[1]主要提出了EdgeConv操作,在点云上能够进行类似CNN在图像上所进行的操作,可以适用于分类与分割任务。EdgeConvGraph Construction对于点云中某点 xi{x_i}xi​ ,利用KNN操作构造有向图G=(V,E)G = \left( {V,E} \right)G=(V,E),其中VVV代表图中各个顶点,EEE代表边。如下图所示:Graph Convolution定义EdgeConv的核心操作为:可以看到,对于中心点xix_ixi​与xjx_jxj​,.
原创
发布博客 2022.04.03 ·
2352 阅读 ·
2 点赞 ·
0 评论 ·
6 收藏

(NIPS 17) PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

PointNet++[1]作为PointNet[2]的续作,着重于解决PointNet[2]没有能够很好的提取局部特征的问题,限制了其对细节图案(fine-grained patterns)的理解,无法泛化至其他复杂的任务场景。通过设计一种层级式(Hierarchical)的结构,对输入点云进行分块,重复使用PointNet[2]结构以增加对局部信息的获取能力。整体的网络架构如上图所示,流程相对简洁,对于输入点云,设计一种层级式架构进行特征提取。Hierarchical Point Set Feat.
原创
发布博客 2022.04.02 ·
598 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(ICCV 19) Deep Closest Point: Learning Representations for Point Cloud Registration

DCP可以算是小数据集ModelNet40上使用深度学习做配准的开山之作了,首先放一下整体模型架构图:总体来说,DCP模型主要由4个部分构成:1. 初始特征生成(Initial Feature Embedding)2. 注意力机制模块(Attention)3. 虚拟匹配对生成(Pointer Generation)4. SVD解位姿下面按照这几个模块的顺序依次进行分析:Initial Feature Embedding对于输入的X(source)与Y(target)点云,首先使用DGCN
原创
发布博客 2022.03.30 ·
1880 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

(ICPR 20) DIP: Distinctive 3D local deep descriptors

DIP[1]属于一种基于PointNet[2]网络的比较简洁的two-stage点云特征提取器,因此文章的重点并不在网络设计上面,而在输入数据local patches的准备上。因此生成正确的local patches以使用PointNet进行特征提取成为DIP的关键。Dataset Preparation按照DIP的格式要求,于作者提供的google drive中下载好3DMatch_train.zip与3DMatch_test.zip,解压后数据组织形式如下:├── 3DMatch_train.
原创
发布博客 2022.03.29 ·
1908 阅读 ·
2 点赞 ·
3 评论 ·
2 收藏

python-pcl (on Windows) Installation Guide (Simplest Ever)

python-pcl windows平台极简安装依旧是在基于conda环境管理下安装python-pcl, 操作平台为windows.Steps:1. 利用 conda 创建新环境>> conda create -n pcl python=3.6>> conda activate pcl>> pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple>> pip
原创
发布博客 2021.09.25 ·
295 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

(CVPR 20) D3Feat: Joint Learning of Dense Detection and Description of 3D Local Features

D3Feat核心优势:1.D3Feat提供了一种联合框架,在学习描述子的同时进行关键点的检测,即最终用来做RANSAC配准的点不再是随机选取,而是选取网络学习出来的关键点。
原创
发布博客 2021.08.28 ·
968 阅读 ·
0 点赞 ·
14 评论 ·
7 收藏

PCRNet: Point Cloud Registration Network using PointNet Encoding

PCRNet算是在ModelNet40这种object-centric数据集上用deep-learning做配准最好入手的一篇文章了,整体架构涉及简洁明了,一句话描述就是简单粗暴,话不多说,直接上网络架构图:Work Flow:首先对输入source (N×3N \times 3N×3)与template (M×3M \times 3M×3)进行PointNet操作,即MLP + max-pooling后,分别得到描述各自点云的维度为1024的global feature vector:Φ(PS).
原创
发布博客 2021.08.27 ·
1401 阅读 ·
4 点赞 ·
4 评论 ·
9 收藏

(CVPR 21) SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration

SpinNet核心优势:提取的点云表面特征具有旋转不变性(由标题便知)。泛化性能好:仅在3DMatch上训练,在ETH上提取特征评估得到的FMR相比其他方法更高。SpinNet核心构成:Spatial Point Transformer (这里的transformer要与NLP中的区分开…)1.1 Alignment with a Reference Axis1.2 Spherical Voxelization1.3 Transformation on the XY-Plane1.4.
原创
发布博客 2021.08.21 ·
1890 阅读 ·
7 点赞 ·
14 评论 ·
12 收藏

MinkowskiEngine 安装

a
原创
发布博客 2021.05.30 ·
8964 阅读 ·
13 点赞 ·
32 评论 ·
33 收藏
加载更多