线性代数第1讲

线性代数第1讲

主要内容:

  1. 行列式的概念
  2. 行列式的计算
  3. 行列式的性质

一、行列式的概念

  1. 二阶行列式
    3152

    概念:“行” |3  5| ;”列”
    52

    aij 表示行列式中第 i 行,第j列元素
    行列式表示的是其元素之间的一种特定的运算(行列式本质是一个值,所以可以比较大小)
  2. 行列式一个元素的余子式(即删除元素所在行列的剩余部分)
    三阶行列式
    135127040

    a11 余子式为
    M11=2740,M

    同理
    M32=1304

    代数余子式(在余子式的前面加一个“正或负号”,具体由行列之和决定)
    A11=(1)1+1M11=2740,A

    A32=(1)3+2M32=1304

    aij 的代数余子式为
    Aij=(1)i+jMij

    注意:代数余子式用来计算行列式的值

二、行列式的计算

行列式=按任何一行(列)展开

acbd=adcb

因为,a的代数余子式为d;c的代数余子式为-b;展开之和如上式。
135127040,

=1(1)1+12740+(1)(1)1+23540+0(1)1+33527=8

行列式按照行或列展开计算出的值应该相同
实际工作中选择“0”多的行或列展开,可减少计算量
D=1014100121020320,

D===1(1)3+1101212030+2(1)3+41041012123(1)2+311222(1)(1)2+314113(22)2(1+4)=10

三、行列式的性质

  1. 行列交换,其值不变
    此性质表示“行列式中行列的地位一样”
    3546=3456=2
  2. 两行交换,其值变号
    3546=5364=2
  3. 若一行或列有公因子,则可提出
    a3cb3d=3acbd
  4. 对行的倍加运算,其值不变
    3112=+23510=5

例1.(下三角行列式)

D=a4150b8700c6000d=ab870c600d=abc60d=abcd

例2.两行成比例,则行列式为0

D==218272947376946841807290737094604=0

例3.
D==+===+=1401132121322112140113210044211214011321004021114(1)3+314113121140101312114(1)2+11121=12

总结:
余子式和代数余子式
会利用行列式的性质和展开的方法,计算行列式的值

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

dlpzgr

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值