傅立叶变换第1讲

本系列的目的:
作为计算机专业从业人员,痛感数学功底太差,而傅立叶变换在工程领域应用广泛,功能强大到爆,一直希望彻底弄明白傅立叶变换的计算和使用,写此文章一为交流,二为自勉,实为个人学习笔记,欢迎批评指正!

主要内容:
1. 正交函数列
2. 欧拉公式

一、正交函数列

gn(x)[a,b](n=0,1,2,),mn,gm(x)gn(x) [a,b],

bagm(x)gn(x)dx=0,mnbag2n(x)dx>0,m=n

{gn(x)}[a,b]

{1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,}2π

: 1cos0xm=1,2,n=0,1,2,,

===ππsinmxcosnxdx12ππ[sin(m+n)x+sin(mn)x]dx12[cos(m+n)xm+n+cos(mn)xmn]|ππ,mncos2mx4m|ππ,m=n0

注:主要运用三角函数,积化和差,同理
ππcosnxsinmxdx=0

m=1,2,n=1,2,,

===ππsinmxsinnxdx12ππ[cos(mn)xcos(m+n)x]dx12[sin(mn)xmnsin(m+n)xm+n]|ππ,mn12(xsin2mx2m)|ππ,m=n{0,mnπ,m=n

m=0,1,2,n=0,1,2,,

===ππcosmxcosnxdx12ππ[cos(m+n)x+cos(mn)x]dx12[sin(m+n)xm+n+sin(mn)xmn]|ππ,mn12[sin2mx2m+x]|ππ,m=n012[x+x]|ππ,m=n=00,mnπ,m=n02π,m=n=0

[π,π]

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

dlpzgr

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值