- 博客(42)
- 收藏
- 关注
原创 智能优化算法改进策略之局部搜索算子(三)—二次插值法
多项式是逼近函数的一种常用工具。在寻求函数极小点的区间(即寻查区间)上,我们可以利用在若干点处的函数值来构成低次插值多项式,用它作为求极小点的函数的近似表达式,并用这个多项式的极小点作为原函数极小点的近似。低次多项式的极小点比较容易计算。常用的插值多项式为二次或三次,一般说来三次插值公式的收敛性好一些,但在导数不变计算时,三点二次插值也是一种常用的方法[1]。以海洋捕食者算法(MPA)为基本算法。考察基于二次插值法的改进海洋捕食者算法(命名为QIMPA) vs. 海洋捕食者算法(MPA)
2024-06-23 17:13:07 250
原创 智能优化算法改进策略之局部搜索算子(四)--梯度搜索法
以海洋捕食者算法(MPA)为基本算法。考察基于梯度搜索的改进海洋捕食者算法(命名为GBSMPA) vs. 海洋捕食者算法(MPA)在Penalized1函数上的比较。在CEC2017-1上的比较。在CEC2017-3上的比较。在Sphere函数上的比较。在CEC2017-4上的比较。
2024-06-23 17:05:42 234
原创 智能优化算法改进策略之局部搜索算子(七)--自适应模式搜索法
在这种直接搜索技术中,将模式移动和探索移动相结合,迭代地寻找最优解。然后,为了加快在探索性移动中确定的方向上的搜索过程,采用模式移动。模式搜索法[1]是Hooke与Jeeves提出的一种直接搜索算法,其目的是通过比较目标函数在有限点集中的函数值来优化目标函数。模式搜索方法原有的固定步长适用于单峰函数,但在处理复杂的多峰问题时,可能导致解陷入局部最优。基于自适应模式搜索法的改进海洋捕食者算法(PMPA)在23个标准测试函数及CEC2017测试集中的大部分函数上的性能优于原算法。
2024-06-23 17:02:29 916
原创 智能优化算法改进策略之局部搜索算子(八)--Powell方法
Powell方法[1]是一种无约束优化算法,又称为方向加速法,用于寻找多变量函数的极小值。其基本思想是在迭代中逐次产生Q共轭方向组,本质上它属于不需计算导数的共轭方向法。它在迭代过程中通过调整方向和步长,逐步缩小搜索范围,以达到目标函数的最小值。考察基于Powell方法的改进海洋捕食者算法(命名为PO-MPA) vs. 海洋捕食者算法(MPA)基于Powell方法的改进海洋捕食者算法(PO-MPA)在23个标准测试函数及CEC2017测试集中的大部分函数上的性能优于原算法。
2024-06-23 16:58:48 406
原创 智能优化算法改进策略之局部搜索算子(六)--进化梯度搜索
在产生并评估了解的后代之后,进化算法通常只选择最适合的后代作为下一代的亲本。此外,由于后续的测试步骤,EGS程序不是一个纯粹的进化算法,而是一个混合方法。进化梯度搜索(Evolutionary Gradient Search, EGS)[1]是兼顾进化计算与梯度搜索的一种混合算法,具有较强的局部搜索能力。从经典的优化技术中,我们知道,在某些情况下,最速下降方法表现出无用的梯度振荡:它不是沿着非常窄的山谷,同时优化路径可能在两边之间振荡,导致沿着山谷方向的有效进展非常小。通过整合之前的步骤来提供一种记忆。
2024-06-23 11:11:41 728
原创 【智能优化算法改进策略之局部搜索算子(五)—自适应Rosenbrock坐标轮换法】
作为一种有效的直接搜索技术,Rosenbrock坐标轮换法[1,2]是根据Rosenbrock著名的“香蕉函数”的特点量身定制的,该函数的最小值位于曲线狭窄的山谷中。此外,该方法是一种典型的基于自适应搜索方向集的无导数局部搜索技术。基于自适应Rosenbrock坐标轮换法的改进海洋捕食者算法(SAR-MPA)在23个标准测试函数及CEC2017测试集中的大部分函数上的性能优于原算法。考察基于自适应Rosenbrock坐标轮换法的改进海洋捕食者算法(命名为SAR-MPA) vs. 海洋捕食者算法(MPA)
2024-06-23 11:01:39 711
原创 智能优化算法六种常见图—参数空间图、搜索历史图、第一维度轨迹图、多样性曲线、平均适应度曲线、收敛曲线图(以黏菌算法为例)
智能优化算法六种常见图绘制—参数空间图、搜索历史图、第一维度轨迹图、多样性曲线、平均适应度曲线、收敛曲线图。4、多样性曲线:迭代前期较高的多样性值有利于算法进行全局探索,发现更多高质量的解,而迭代后期较小的多样性值利于算法收敛。3、第一维度轨迹图:反映的是在迭代期间,整个种群的第一个维度的取值。2、搜索历史图:能描述整个迭代过程种群的收敛趋势,如果最终结果显示在全局最优周围有大量的搜索个体,这表明算法具有良好的收敛性能;1、参数空间图:能反映搜索空间的形态,特别对于多峰函数,能展示其大量的局部最优;
2023-06-28 17:01:50 219 1
原创 智能优化算法改进策略之局部搜索算子(一)—动态随机搜索技术
它由一般搜索和局部搜索两部分组成,其中的局部搜索算子是在当前解的领域中展开随机搜索,并且搜索步长逐渐减小(缩减比为0.5),从而达到对当前解附近搜索空间的充分开发。然而,目前文献中涉及引入动态随机搜索技术的改进算法较少,因此读者可将其引入到自己研究的算法中,改进原算法的性能。本次代码考虑将动态局部搜索算子分别嵌入正余弦算法(SCA), 灰狼优化算法(GWO),鲸鱼优化算法(WOA), 哈里斯鹰优化器(HHO)以及平衡器优化算法(EO)。:可自行设计或引入变异方案,增强算法跳出局部最优的能力)。
2023-06-28 16:56:16 158 1
原创 智能优化算法改进策略之局部搜索算子(二)—模式搜索(以正余弦算法和灰狼算法为研究对象)
比如基于模式搜索的粒子群算法[1,2],融合模式搜索的人工蜂群算法[3],带有模式搜索法的鸡群优化算法[4],等等。仿真结果表明,作为一种具有前景的局部搜索工具,模式搜索法能够显著改进原始算法在基准测试特别是单峰问题上的收敛性能。四、算法效果—以单峰函数Sphere function 与 Rosenbrock function 为例,将模式搜索分别用于改进正余弦算法与灰狼优化算法,得到的算法变体分别命名为PSSCA与PSGWO(模式搜索英文名词为:pattern search)。
2023-06-28 16:41:55 95 1
原创 智能优化算法应用(九)—太阳能光伏模型参数辨识问题(以GWO算法与JAYA算法为例)
光伏系统是利用太阳能并将其直接转化为电能的强大工具,选择一个准确稳定的模型来描述光伏系统的性能和非线性特性是至关重要的。不同的光伏模型,如单二极管模型(SDM)和双二极管模型(DDM),在学术界和工业界都非常常见,目前已被广泛使用。就分析方法而言,尽管这些方法机制简单,易于实施,但由于最终结果的质量在很大程度上取决于选点的位置,因此精度不能满足实际需要。此外,命令行窗口会打印输出平均值、标准差、最佳值等统计结果,以及10次独立运行中最佳值对应的最优解,这即是光伏模型所需要估计的参数值。
2023-06-28 16:30:57 133
原创 智能优化算法典型曲线—探索率与开发率曲线作图,以正余弦算法(SCA)为例
无论是近几年不断涌现的“新”算法,还是对现有经典算法的改进,都是以平衡算法的探索与开发为最终目的。然而,大多数文章中缺少对探索与开发的量化分析,这导致改进之后的算法是否真正实现了探索与开发的平衡成了一个谜底。目前,文献【1】由于给出了基于维度多样性的探索与开发量化公式而受到了学者们的广泛关注,此次代码是根据文献【1】中的公式复现而来,以正余弦算法(SCA)为例。读者可根据自己改进的算法自行将其“复刻”到代码中,仿真实验时可对算法探索率与开发率进行分析讨论,以此来增强实验的说服力。2、探索率与开发率曲线图。
2023-06-23 18:21:55 121 1
原创 代码复现:融合长期记忆机制的哈里斯鹰优化算法—LMHHO
参考文献:Hussain K, Zhu W, Salleh M N M. Long-term memory Harris’ hawk optimization for high dimensional and optimal power flow problems[J].代码复现:融合长期记忆机制的哈里斯鹰优化算法—LMHHO,可用于对比实验。算法效果图—以单峰函数F1,多峰函数F12为例。IEEE Access(SCI三区)
2023-07-01 11:44:08 107
原创 代码复现:基于领导者机制的改进哈里斯鹰优化算法—LHHO
参考文献:Naik M K, Panda R, Wunnava A, et al. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding[J].Multimedia Tools and Applications(SCI四区)算法效果图—以F1:Sphere函数,与F5:Rosenbrock函数为例。代码复现:基于领导者机制的改进哈里斯鹰优化算法—LHHO,可用于对比实验。
2023-07-01 11:43:46 34
原创 代码复现:融合学习机制与改进搜索算子的新型布谷鸟搜索算法—SDCS
参考文献:Rakhshani H, Rahati A. Snap-drift cuckoo search: A novel cuckoo search optimization algorithm[J].代码复现:融合学习机制与改进搜索算子的新型布谷鸟搜索算法—SDCS,可用于算法对比。Applied Soft Computing(SCI二区)算法效果图:以单峰函数F1,F5,多峰函数F8为例。
2023-07-01 11:39:44 31
原创 代码复现:带有平衡池策略的改进黏菌优化算法—ESMA
参考文献:Naik M K, Panda R, Abraham A. An entropy minimization based multilevel colour thresholding technique for analysis of breast thermograms using equilibrium slime mould algorithm[J].代码复现:带有平衡池策略的改进黏菌优化算法—ESMA,可用于对比实验。Applied Soft Computing(SCI二区)
2023-07-01 11:38:10 52
原创 代码复现:一种改进的非线性海洋捕食者算法NMPA
参考文献:Sadiq A S, Dehkordi A A, Mirjalili S, et al. Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks[J].Expert Systems with Applications(SCI一区)代码复现:一种改进的非线性海洋捕食者算法NMPA,可用于对比试验。
2023-07-01 11:34:45 107
原创 代码复现:一种改进的非线性海洋捕食者算法NMPA
参考文献:Sadiq A S, Dehkordi A A, Mirjalili S, et al. Nonlinear marine predator algorithm: A cost-effective optimizer for fair power allocation in NOMA-VLC-B5G networks[J].Expert Systems with Applications(SCI一区)代码复现:一种改进的非线性海洋捕食者算法NMPA,可用于对比试验。
2023-07-01 11:31:49 41
原创 代码复现:基于新型反向学习与动态更新机制的增强型蛇优化算法—ESO
参考文献:Yao, L.;Zhang, T.;Ding, S. ESO: An enhanced snake optimizer for real-world engineering problems.代码复现:基于新型反向学习与动态更新机制的增强型蛇优化算法—ESO,可用于算法对比。(SCI一区). 2023, 230, 120594.算法效果图—以单峰函数F1,F7为例。
2023-07-01 11:29:16 104
原创 代码复现:基于精英动态反向学习的增强型正余弦算法—EDOLSCA,可用于对比试验
参考文献:Zhang L, Hu T, Yang Z, et al. Elite and dynamic opposite learning enhanced sine cosine algorithm for application to plat-fin heat exchangers design problem[J].代码复现:基于精英动态反向学习的增强型正余弦算法—EDOLSCA,可用于对比试验。算法效果图:以单峰函数Sphere函数(F1)为例。
2023-06-28 17:05:09 71 1
原创 代码复现:基于竞争学习的灰狼优化算法Clb-GWO
参考文献:Aala Kalananda V K R, Komanapalli V L N. A competitive learning-based Grey wolf Optimizer for engineering problems and its application to multi-layer perceptron training[J].代码复现:基于竞争学习的灰狼优化算法Clb-GWO,可用于算法对比。算法效果图:以单峰函数F1,F7,多峰函数F10,F12为例。
2023-06-28 16:48:07 59 1
原创 代码复现:一种用于全局优化的新型混合正余弦算法-HSCA
参考文献:S. Gupta and K. Deep. A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons.代码复现:一种用于全局优化的新型混合正余弦算法-HSCA,可用于对比试验。Applied Intelligence(SCI,二区)代码获取:百度搜索“面包多”,在。效果图:作用在多峰函数F12上。
2023-06-23 18:17:13 15 1
原创 代码复现:基于贝叶斯估计的改进人工蜂群算法—BEABC
参考文献:Wang C, Shang P, Shen P. An improved artificial bee colony algorithm based on Bayesian estimation[J].Complex & Intelligent Systems(SCI二区)代码复现:基于贝叶斯估计的改进人工蜂群算法—BEABC,可用于对比实验。算法效果图:以单峰函数F1,F7,多峰函数F10,F12为例。
2023-06-23 18:01:42 29 1
原创 智能优化算法应用(八)——输气压缩机设计问题(以黏菌算法为例)
参考文献:Kumar A, Wu G, Ali M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J].Swarm and Evolutionary Computation(SCI一区)算法效果图—以黏菌优化算法为例。
2023-05-20 21:10:12 66
原创 智能优化算法应用(七)——减速机设计问题(以黏菌算法为例)
参考文献:Zhao S, Zhang T, Ma S, et al. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications[J].基本介绍:减速器设计问题的目的是在11个约束条件下,如轴压力、轴承直径、表面压力和齿轮弯曲力,使机械装置的重量最小化。算法效果图:以黏菌算法为例。
2023-05-20 20:55:00 51
原创 智能优化算法应用(六)——悬臂梁设计问题(以黏菌算法为例)
参考文献:Chen P, Zhou S, Zhang Q, et al. A meta-inspired termite queen algorithm for global optimization and engineering design problems[J].基本介绍:这个土木工程问题的结构由五个空心元件组成,每个空心元件都有相等厚度的空心截面。其目的是减少或最小化悬臂梁的重量。梁的厚度是恒定的,设计变量是五个元件的横截面宽度。详情可参考如下文献中的4.5节。算法效果图——以黏菌算法为例。
2023-05-20 20:40:55 318
原创 智能优化算法应用(五)——齿轮系设计问题(以黏菌算法为例)
参考文献:Chen P, Zhou S, Zhang Q, et al. A meta-inspired termite queen algorithm for global optimization and engineering design problems[J].基本介绍:齿轮系设计问题(Zhong et al.,2021)的目标是降低或最小化齿轮系的变速器特定成本。设计变量是齿轮的数量x1,x2,x3与x4。详情可参考如下文献中的4.2节。算法效果图——以黏菌算法为例。
2023-05-20 19:57:27 62
原创 智能优化算法应用(四)——焊接梁设计问题(以黏菌算法为例)
参考文献:Zhao S, Zhang T, Ma S, et al. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications[J].基本介绍:焊接梁的制造成本被认为是最小化的。在这个问题中,应该优化四个变量,它们是焊条的长度(l)、厚度(b)、高度(t)和焊缝厚度(h)。详情可参考如下文献中的4.3节。算法效果图—以黏菌算法为例。
2023-05-20 19:30:27 55
原创 智能优化算法应用(二)——最小张力弦设计问题(以黏菌算法为例)
参考文献:Kumar A, Wu G, Ali M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J].基本介绍:这个问题的主要目的是优化拉伸弹簧或压缩弹簧的重量。这个问题包含四个约束条件,并使用三个变量来计算重量:导线的直径(x1)、线圈直径的平均值(x2)和有效线圈的数量(x3)。算法效果图—以黏菌优化算法为例。
2023-05-20 18:43:34 35
原创 智能优化算法应用(一)——三杆桁架设计问题(以黏菌算法为例)
参考文献:Kumar A, Wu G, Ali M Z, et al. A test-suite of non-convex constrained optimization problems from the real-world and some baseline results[J].基本介绍:这个优化问题来自土木工程,本质上可建模为一个约束优化问题。这个问题的主要目的是使钢筋结构的重量最小化。这个问题的约束是基于每个钢筋的应力约束。由此产生的问题具有三个非线性约束的线性目标函数。
2023-05-20 18:23:57 61
原创 代码复现:基于强化学习的神经网络算法—RLNNA
参考文献:Zhang Y. Neural network algorithm with reinforcement learning for parameters extraction of photovoltaic models[J].IEEE Transactions on Neural Networks and Learning Systems(SCI一区)算法效果图:以单峰函数F1,F5,F7,多峰函数F8,F10,F12为例。代码复现:基于强化学习的神经网络算法—RLNNA,可用于算法对比。
2023-05-17 10:43:10 61
原创 代码复现:基于拟反向学习与Q-学习策略的海洋捕食者算法QQLMPA
参考文献:Zhao S, Wu Y, Tan S, et al. QQLMPA: A quasi-opposition learning and Q-learning based marine predators algorithm[J].代码复现:基于拟反向学习与Q-学习策略的海洋捕食者算法QQLMPA,可用于对比实验。Expert Systems with Applications(SCI一区)算法效果图:以单峰函数F7为例。
2023-05-15 21:07:54 37
原创 代码复现:基于多重试验向量的改进差分进化算法—MTDE
参考文献:Nadimi-Shahraki M H, Taghian S, Mirjalili S, et al. MTDE: An effective multi-trial vector-based differential evolution algorithm and its applications for engineering design problems[J].代码复现:基于多重试验向量的改进差分进化算法—MTDE,可用于对比实验。Applied Soft Computing(SCI二区)
2023-05-14 16:43:25 230
原创 代码复现:基于记忆、进化算子、局部搜索以及线性种群规模缩减技术的改进灰狼优化器—MELGWO
参考文献:Ahmed R, Rangaiah G P, Mahadzir S, et al. Memory, evolutionary operator, and local search based improved Grey Wolf Optimizer with linear population size reduction technique[J].代码复现:基于记忆、进化算子、局部搜索以及线性种群规模缩减技术的改进灰狼优化器—MELGWO,可用于对比实验。
2023-05-14 15:47:05 52
原创 代码复现:基于维度学习的改进灰狼优化算法I-GWO
参考文献:Nadimi-Shahraki M H, Taghian S, Mirjalili S. An improved grey wolf optimizer for solving engineering problems[J].Expert Systems with Applications(SCI一区)代码复现:基于维度学习的改进灰狼优化算法I-GWO,可用于算法对比。算法效果图:以多峰函数F8为例。
2023-05-14 11:59:11 37
原创 代码复现:基于自适应T分布优势种群的黏菌优化算法—DTSMA
参考文献:Yin S, Luo Q, Du Y, et al. DTSMA: Dominant swarm with adaptive t-distribution mutation-based slime mould algorithm[J].Mathematical Biosciences and Engineering(SCI四区)代码复现:基于自适应T分布优势种群的黏菌优化算法—DTSMA,可用于对比实验。算法效果图—以单峰函数F1,多峰函数F10,F12为例。
2023-05-14 09:39:04 133
原创 代码复现:基于记忆机制的改进灰狼优化算法—mGWO(在CEC2017测试集上的代码)
经过复现发现,mGWO在CEC2014与CEC2017测试集中的大多数函数上的表现较好,而在23个标准测试函数上的性能,有相当一部分不如原算法,故而。算法效果图—以单峰函数CEC2017-1,简单多峰函数CEC2017-6,混合函数CEC2017-12,以及复合函数CEC2017-28为例。代码复现:基于记忆机制的改进灰狼优化算法—mGWO,可用于对比实验。Applied Soft Computing(SCI二区)
2023-05-13 21:08:30 56
原创 代码复现:基于正交反向学习的黏菌优化算法—mSMA
参考文献:Houssein E H, Helmy B E, Rezk H, et al. An efficient orthogonal opposition-based learning slime mould algorithm for maximum power point tracking[J].Neural Computing and Applications(SCI三区)代码复现:基于正交反向学习的黏菌优化算法—mSMA,可用于算法对比。算法效果图:以单峰函数F1和F7为例。
2023-05-13 16:47:48 47
原创 代码复现:基于灰狼优化与生物地理学优化的新型混合算法HBBOG(含23个标准测试函数)
参考文献:Xinming Zhang, Qiang Kang, Jinfeng Cheng, Xia Wang. A novel hybrid algorithm based on Biogeography-Based Optimization and Grey Wolf Optimizer.代码复现:基于灰狼优化与生物地理学优化的新型混合算法HBBOG,可用于算法对比。Applied Soft Computing(SCI二区)算法效果图:以多峰函数F8为例。
2023-05-11 22:18:39 48
原创 代码复现:基于修正进化种群动力学的灰狼优化算法RSMGWO,可用于对比实验
Neural Computing and Applications(SCI三区)代码复现:基于修正进化种群动力学的灰狼优化算法RSMGWO,可用于对比实验。算法效果图:以多峰函数Ackley's Function (F10) 为例。
2023-05-05 20:33:43 50
原创 代码复现:用于实参数优化的增广灰狼优化算法-AGWO,可用于对比实验
参考文献:M.H. Qais, H.M. Hasanien, and S. Alghuwainem. Augmented grey wolf optimizer for grid-connected pmsg-based wind energy conversion systems.代码复现:用于实参数优化的增广灰狼优化算法-AGWO,可用于对比实验。Applied Soft Computing(SCI二区)算法效果图:以单峰函数F7为例。
2023-04-30 18:53:08 82
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人