智能优化算法六种常见图—参数空间图、搜索历史图、第一维度轨迹图、多样性曲线、平均适应度曲线、收敛曲线图(以黏菌算法为例)

一、基本介绍:

智能优化算法六种常见图绘制—参数空间图、搜索历史图、第一维度轨迹图、多样性曲线、平均适应度曲线、收敛曲线图。一篇文章有几张高颜值的图片,能给审稿人留下良好的第一印象。以上这些图像均可用于仿真实验中。各图像功能如下:

1、参数空间图:能反映搜索空间的形态,特别对于多峰函数,能展示其大量的局部最优;

2、搜索历史图:能描述整个迭代过程种群的收敛趋势,如果最终结果显示在全局最优周围有大量的搜索个体,这表明算法具有良好的收敛性能;

3、第一维度轨迹图:反映的是在迭代期间,整个种群的第一个维度的取值。它的波动情况一般是在迭代初期较为剧烈,因为算法在进行全局探索,而迭代后期则趋于平稳,说明算法正在向全局最优收敛;

4、多样性曲线:迭代前期较高的多样性值有利于算法进行全局探索,发现更多高质量的解,而迭代后期较小的多样性值利于算法收敛。(多样性与收敛性是一对矛盾体,很多文章中也将平衡算法的探索与开发解释为平衡多样性与收敛性);

5、平均适应度曲线与收敛曲线:用来反映算法整体的收敛性能。

代码获取:

二、多样性值的计算公式参考如下文献:

Hussain K, Salleh M N M, Cheng S, et al. On the exploration and exploitation in popular swarm-based metaheuristic algorithms[J]. Neural Computing and Applications (SCI三区), 2019, 31: 7665-7683.

三、算法效果图—以黏菌优化算法(SMA)在单峰函数F5、F7,多峰函数F10上的表现为例

1、F5

2、F7

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值