【智能优化算法改进策略之局部搜索算子(五)—自适应Rosenbrock坐标轮换法】

1、原理介绍

作为一种有效的直接搜索技术,Rosenbrock坐标轮换法[1,2]是根据Rosenbrock著名的“香蕉函数”的特点量身定制的,该函数的最小值位于曲线狭窄的山谷中。此外,该方法是一种典型的基于自适应搜索方向集的无导数局部搜索技术。此法于1960年由Rosenbrock提出,它与Hooke-Jeeves模式搜索法有些类似,但比模式搜索更为有效。每次迭代运算分为两部分[3]:

1). 沿n个正交方向进行试探;

2). 决定n个新的正交方向以改善原来的搜索方向。每次迭代的试探方向组是不同的。

2、自适应Rosenbrock坐标轮换法

原始Rosenbrock坐标轮换法的搜索步长在初始化后根据搜索情况进行尺度因子调整,为了更好地适应复杂的适应度景观,考虑为步长更新融入更多的启发式信息,使其能够基于优化过程中精英个体获得的知识作出自适应的调整,公式如下所示:

3、仿真实验

以海洋捕食者算法(MPA)为基本算法。考察基于自适应Rosenbrock坐标轮换法的改进海洋捕食者算法(命名为SAR-MPA) vs. 海洋捕食者算法(MPA)

在Sphere函数上的比较:

图片

在Rosenbrock函数上:

图片

在Ackley函数上:

图片

在Penalized1函数上:

图片

在CEC2017-1函数上:

图片

在CEC2017-3函数上:

图片

在CEC2017-4函数上:

图片

在CEC2017-12函数上:

图片

在CEC2017-28函数上:

图片

       基于自适应Rosenbrock坐标轮换法的改进海洋捕食者算法(SAR-MPA)在23个标准测试函数及CEC2017测试集中的大部分函数上的性能优于原算法。在30维的Rosenbrock函数上精度达到1e-20,在30维CEC2017测试集的单峰函数上能直接找到全局最优。

代码获取:

4、参考文献

[1] Robert Michael Lewis, Virginia Torczon, and Michael W. Trosset. Direct search methods: then and now. Journal of Computational and Applied Mathematics, 124(1):191–207, 2000.

[2] H., H., and Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3(3):175–184, 1960.

[3] 陈宝林. 最优化理论与算法[M]. 清华大学出版社, 2005.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值