【智能优化算法改进策略之局部搜索算子(五)—自适应Rosenbrock坐标轮换法】

1、原理介绍

作为一种有效的直接搜索技术,Rosenbrock坐标轮换法[1,2]是根据Rosenbrock著名的“香蕉函数”的特点量身定制的,该函数的最小值位于曲线狭窄的山谷中。此外,该方法是一种典型的基于自适应搜索方向集的无导数局部搜索技术。此法于1960年由Rosenbrock提出,它与Hooke-Jeeves模式搜索法有些类似,但比模式搜索更为有效。每次迭代运算分为两部分[3]:

1). 沿n个正交方向进行试探;

2). 决定n个新的正交方向以改善原来的搜索方向。每次迭代的试探方向组是不同的。

2、自适应Rosenbrock坐标轮换法

原始Rosenbrock坐标轮换法的搜索步长在初始化后根据搜索情况进行尺度因子调整,为了更好地适应复杂的适应度景观,考虑为步长更新融入更多的启发式信息,使其能够基于优化过程中精英个体获得的知识作出自适应的调整,公式如下所示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值