1.22论文速递

两篇论文探讨了医学影像领域的创新技术,包括无监督异常检测方法RA,超越文本监督的编码器RAD-DINO,以及联邦学习在隐私保护下的应用。另一篇文章关注窗口统计在提高模型泛化中的作用,以及高频空间扩散模型在加速MRI重建中的效能。
摘要由CSDN通过智能技术生成

《Towards Universal Unsupervised Anomaly Detection in Medical Imaging》

RA:医学影像中的通用无监督异常检测

单位:慕尼黑工业大学, 亥姆霍兹慕尼黑中心等
论文链接:https://arxiv.org/pdf/2401.10637.pdf
代码链接:https://github.com/ci-ber/RA

医学成像数据日益复杂,凸显了对先进异常检测方法的需求,以自动识别各种病理。目前的方法在捕捉广泛的异常方面面临挑战,通常将其用于大脑扫描中的特定病变类型。为了应对这一挑战,我们引入了一种新的无监督方法,称为:反向自动编码器(RA),旨在创建逼真的伪健康重建,从而能够检测更广泛的病理。我们在各种成像模式中评估了所提出的方法,包括大脑磁共振成像(MRI)、儿童手腕X射线和胸部X射线,并证明了与现有最先进的方法相比,在检测异常方面具有优越的性能。我们的无监督异常检测方法可以通过识别更广泛的未知病理来提高医学成像的诊断准确性。
在这里插入图片描述

《RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision》

RAD-DINO:探索超越文本监督的可扩展医学图像编码器

单位:微软Health Futures等
论文链接:https://arxiv.org/pdf/2401.10815.pdf

语言监督预训练已被证明是从图像中提取语义上有意义的特征的一种有价值的方法,是计算机视觉和医学成像领域中多模式系统的基础元素。但是,生成的特征受到文本中包含的信息的限制。这在医学成像中尤其有问题,因为放射科医生的书面发现侧重于特定的观察结果;由于担心个人健康信息的泄露,配对成像文本数据的稀缺性加剧了这一挑战。在这项工作中,我们从根本上挑战了学习通用生物医学成像编码器时普遍依赖语言监督的现状。我们介绍了RAD-DINO,这是一种仅在单模态生物医学成像数据上预训练的生物医学图像编码器,在各种基准上获得与最先进的生物医学语言监督模型相似或更高的性能。具体而言,学习表示的质量是在标准成像任务(分类和语义分割)和视觉语言对齐任务(从图像生成文本报告)上评估的。为了进一步证明语言监督的缺点,我们发现RAD-DINO的特征与其他医疗记录(如性别或年龄)的相关性比语言监督模型更好,而语言监督模型通常在放射学报告中没有提及。最后,我们进行了一系列消融实验,确定了影响RAD-DINO性能的因素;值得注意的是,我们观察到RAD-DINO的下游性能随着训练数据的数量和多样性而良好地扩展,这表明仅图像监督是训练基础生物医学图像编码器的一种可扩展方法。
在这里插入图片描述

《Federated Learning for Medical Image Analysis: A Survey》

医学图像分析的联邦学习:全面调研

单位:北卡罗来纳大学教堂山分校
论文链接:https://arxiv.org/pdf/2306.05980.pdf

医学影像中的机器学习经常面临一个基本的困境,即小样本问题。 最近的许多研究建议使用从不同采集站点/数据集中汇集的多域数据来提高统计能力。 然而,出于隐私保护的原因,来自不同站点的医学图像不能轻易共享以构建用于模型训练的大型数据集。 作为一种有前途的解决方案,联邦学习能够基于来自不同站点的数据协同训练机器学习模型,而无需跨站点数据共享,最近引起了相当大的关注。 在本文中,我们对联邦学习方法在医学图像分析中的最新发展进行了全面的调研。 我们首先介绍联邦学习的背景和动机,用于处理医学影像中的隐私保护和协作学习问题。 然后,我们全面回顾了医学图像分析联邦学习方法的最新进展。 具体来说,现有方法根据联邦学习系统的三个关键方面进行分类,包括客户端、服务器端和通信技术。 在每个类别中,我们根据医学图像分析中的具体研究问题总结了现有的联邦学习方法,并提供了对不同方法动机的见解。 此外,我们还回顾了当前联邦学习研究的现有基准医学成像数据集和软件平台。 我们还进行了一项实验研究,以实证评估用于医学图像分析的典型联邦学习方法。 这项调查有助于更好地了解这个有前途的研究领域的当前研究状况、挑战和潜在的研究机会。
在这里插入图片描述

《A simple normalization technique using window statistics to improve the out-of-distribution generalization on medical images》

改进医学图像任务的窗口统计的归一化技术

单位:上交, 浙大城院, 深睿医疗, 复旦
论文链接:https://ieeexplore.ieee.org/document/10399861
代码链接:https://github.com/joe1chief/windowNormalizaion

由于医学图像普遍存在数据稀缺和数据异质性,因此使用以前的标准化方法训练有素的卷积神经网络 (CNN) 在部署到新站点时可能表现不佳。 然而,现实世界临床应用的可靠模型应该能够很好地推广分布内 (IND) 和分布外 (OOD) 数据(例如,新站点数据)。 在这项研究中,我们提出了一种称为窗口归一化(WIN)的新颖归一化技术,以改进异构医学图像的模型泛化,它为现有归一化方法提供了一种简单而有效的替代方法。 具体来说,WIN 使用窗口内计算的本地统计数据扰乱标准化统计数据。 这种特征级增强技术可以很好地规范模型并显著提高其 OOD 泛化能力。 利用其优势,我们提出了一种新颖的自蒸馏方法,称为 WIN-WIN 。 WIN-WIN 可以通过两次前向传递和一致性约束轻松实现,作为现有方法的简单扩展。 各种任务(6 个任务)和数据集(24 个数据集)的广泛实验结果证明了我们方法的通用性和有效性。
在这里插入图片描述

《High-Frequency Space Diffusion Models for Accelerated MRI》

加速 MRI 重建的高频空间扩散模型

单位:中科院, 国科大, 琶洲实验室
论文链接:https://arxiv.org/abs/2208.05481

具有连续随机微分方程 (SDE) 的扩散模型在图像生成方面表现出了卓越的性能。 它可以用作深度生成先验来解决 MR 重建中的逆问题。 然而,现有的VP-SDE可以被视为最大化要重建的MR图像的能量,并且可能导致SDE序列发散。 基于VE-SDE的MR重建与实际扩散过程不一致。 此外,基于 VE 和 VP-SDE 的模型都存在耗时的采样过程,导致重建时间较长。 在本研究中,专门针对基于扩散模型的鲁棒MR重建设计了一种关注高频空间扩散过程的新SDE。 在公开的 fastMRI 数据集上的实验表明,基于 HFS-SDE 的重建方法在重建精度方面优于并行成像、监督深度学习以及现有的基于 VE 和 VP-SDE 的方法。 它还提高了MR重建的稳定性并加速了反向扩散的采样过程。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值