综述
这一篇介绍如何在GPU服务器上搭建TensorFlow环境。
安装英伟达驱动和CUDA
安装与硬件对应的NVIDIA driver和CUDA
安装NVIDIA Docker
安装NVIDIA Docker
可以参考https://github.com/NVIDIA/nvidia-docker 中流程
注意:安装NVIDIA Docker需要先安装普通Docker
获取镜像
docker pull tensorflow/tensorflow:latest-gpu-py3
获取最新的TensorFlow开发环境
docker pull tensorflow/serving:latest-gpu
获取最新的TensorFlow生产环境
启动镜像
用镜像创建一个TF Docker开发环境
nvidia-docker run --name test-gputf-py3 -p 8888:8888 -p 6006:6006 -v /root/tensorflow-data/test-gputf-py3:/notebooks -d tensorflow/tensorflow:1.10.1-gpu-py3
参数意义如下:
启动一个名为test-gputf-py3
将dockers内端口号8888、6006做映射到外面
将docker内:/notebooks文件夹挂载到 /root/tensorflow-data/test-gputf-py3
用镜像创建一个TF Serving Docker生产环境(TF Serving)
docker run --name test-gputfserving --runtime=nvidia -p 8501:8501 --mount type=bind,source=/root/tensorflow-data/test-gputf-py3/models/saved_model_half_plus_two_gpu,target=/models/half_plus_two -e MODEL_NAME=half_plus_two -t tensorflow/serving:1.10.1-gpu &
制作私有镜像
简易方法
docker commit [your docker name] [your images REPOSITORY]:[your images TAG]
进阶方法
使用dockerfile,详细资料自己上网查