统计建模
人工智障仁波切
这个作者很懒,什么都没留下…
展开
-
使用pymc进行统计建模
1、一个统计模型有这样一个数据集,它按照时间顺序,收录了英国从1851年到1962年每年的矿难发生次数。英国,矿难发生的概率服从一个Poisson过程,在时间轴的早些时候,矿难发生的概率较高,后来矿难发生的概率比较低。我们将上述概念模型转化为统计模型:以上模型参数定义如下:D_t:: 第t年矿难发生的次数;r_t: 第t年Posson过程的参数;s: 泊原创 2016-09-13 14:28:52 · 4495 阅读 · 0 评论 -
贝叶斯推论
p(θ|D)p(θ|D)p(\theta|D)被称为后验分布 p(θ|D)=p(D|θ)p(θ)p(D)p(θ|D)=p(D|θ)p(θ)p(D)p(\theta|D)=\frac{p(D|\theta)p(\theta)}{p(D)} 预测分布p(x|D)=∫p(x,θ|D)dθ=∫p(x|θ)p(θ|D)dθp(x|D)=∫p(x,θ|D)dθ=∫p(x|θ)p(θ|D)dθp(x|D...原创 2018-09-02 10:03:57 · 363 阅读 · 1 评论 -
1.2贝叶斯线性回归模型
目录[TOC] 线性回归模型已经在1.1章节中详细定义,这里不重复例举。1.2为什么用贝叶斯线性回归1.2.1最大似然估计(MLE)1.2.2最大后验(MAP)1.2.3 贝叶斯...原创 2018-09-02 15:28:58 · 1383 阅读 · 0 评论