1.2贝叶斯线性回归模型

目录

1.2为什么用贝叶斯线性回归

1.2.1最大似然估计(MLE)

目标函数

argmaxθp(D|θ) arg ⁡ max θ ⁡ p ( D | θ )

这里 θ θ 是模型里面的参数, D D 是观测值
优点:计算简单
缺点:容易过度拟合
预测结果是一个固定的值,无法对不确定性建模

1.2.2最大后验(MAP)

目标函数

argmaxθp(θ|D)

优点:解决了过度拟合的问题;
缺点:任然没有办法对不确定性建模;

1.2.3 贝叶斯方法

贝叶斯对预测分布建模,

p(y|t,D) p ( y | t , D )

1.2.4 贝叶斯线性模型定义

一组观测数据 D=(x1,y1,(x2,y2),...(xn,yn)),xiRd,yiR D = ( ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x n , y n ) ) , x i ∈ R d , y i ∈ R
Y1,Y2,..Yn Y 1 , Y 2 , . . Y n 对 w独立
YiN(wTxi,a1) Y i ∼ N ( w T x i , a − 1 ) 这里 a=1σ2,a>0 a = 1 σ 2 , a > 0 又被称为精度
wN(0,b1I) w ∼ N ( 0 , b − 1 I ) ,b>0;
这里假设 a,b a , b 是已知的。

1.2.4贝叶斯线性回归的后验分布

为了计算后验分布,我们首先需要似然函数,写为:

p(D|w)exp(a2(yAw)T(yAw)) p ( D | w ) ∝ e x p ( − a 2 ( y − A w ) T ( y − A w ) )

这边 A A 是design matrix。
后验分布
p(w|D)p(D|w)p(w)exp(a2(yAw)T(yAw)b2wTw)

p(w|D)=N(w|μ,Λ1) p ( w | D ) = N ( w | μ , Λ − 1 )

Λ=aATA+bIu=aΛ1ATy Λ = a A T A + b I u = a Λ − 1 A T y

1.2.5贝叶斯线性回归的预测分布

预测分布

p(y|x,D)=p(y|x,D,w)p(w|x,D)dwp(y|x,w)p(w|D)dwN(y|wTx,a1N(w|μ,Λ1)) p ( y | x , D ) = ∫ p ( y | x , D , w ) p ( w | x , D ) d w ∫ p ( y | x , w ) p ( w | D ) d w ∫ N ( y | w T x , a − 1 N ( w | μ , Λ − 1 ) )

p(y|x,D)=N(u,1λ) p ( y | x , D ) = N ( u , 1 λ )

u=μTx1λ=1a+xTΛ1x u = μ T x 1 λ = 1 a + x T Λ − 1 x

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值