一元线性回归

本文详细介绍了线性回归中的特例——一元线性回归,包括定义、线性概念、一元概念,以及最小二乘准则和极大似然估计的求解方法。并提供了Python和C++两种编程语言的实现示例。
摘要由CSDN通过智能技术生成

目录

定义

什么是回归?

什么是线性?

什么是一元?

回归方程及问题求解

最小二乘准则求解:

极大似然估计求解:

实现

python代码实现及结果图:

c++代码实现:


定义

什么是回归?

      简而言之,回归是研究变量x、y之间关系的统计分析方法。通常,x是自变量,y是因变量。常用于数据预测。

什么是线性?

      线性与非线性,是针对于自变量和因变量之间的关系而言的。所以,如果回归系数是一次的,称为线性回归,否则为非线性回归。

      回归系数是一次,为线性:y=w_{1}x^{2}+w_{2}x+b

      回归系数高于一次,为非线性:y=w^{2}x+b

什么是一元?

      自变量只有一个,为一元:y=wx+b

      自变量多于一个,为多元:y=w_{1}x_{1}+w_{2}x_{2}+b

回归方程及问题求解

     已知实测数据(即样本)为:\left ( x_{1},y_{1}\right ),\left ( x_{2},y_{2} \right ),...,\left ( x_{n},y_{n} \right )

     我们假设它们满足如下方程:

y_{i}=wx_{i}+bi=1,2,...,n

对于每一个x_{i},方程都有一个y_{i}与其对应。

      现在我们要寻找一组数据(\hat{w},\hat{b} ),使得

\hat{y_{i}}=\hat{w}x_{i}+\hat{b}i=1,2,...,n

我们希望这个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值