40、几何光学与眼睛光学原理全解析

几何光学与眼睛光学原理全解析

一、摄影中的景深原理

在摄影时,如果拍摄场景中的物体与镜头的距离不一致,就无法让所有物体的图像同时清晰对焦。光圈大小对图像的模糊程度有显著影响。大光圈时,不在焦平面上的物体模糊程度更大;而小光圈(高f值)下,图像的模糊程度会减小,我们称这种情况为具有更大的“景深”。

景深的变化规律可以用以下表格总结:
| 光圈情况 | 模糊程度 | 景深 |
| ---- | ---- | ---- |
| 大光圈(小f值) | 大 | 小 |
| 小光圈(大f值) | 小 | 大 |

二、眼睛的光学结构与原理
  1. 眼睛的结构与成像
    眼睛在光学上如同一个强大的复合透镜,能在视网膜上形成真实的图像。进入眼睛到达视网膜的光量可以通过调节虹膜上的瞳孔大小来控制。视网膜具有很高的分辨率,但只有在光学轴与视网膜相交点周围的小区域——黄斑(macula lutea),也被称为“黄斑区”,这里的感光细胞主要是视锥细胞,能让我们辨别不同颜色。视网膜的其他部分,感光细胞密度较低,主要是视杆细胞,它们比视锥细胞更敏感,但不能提供颜色信息。光线在到达感光细胞之前,要穿过几层细胞,这可能与人类在白天户外活动、阳光较强的进化过程有关。而生活在深海黑暗环境中的物种,光线可直接到达视杆细胞。

以下是眼睛主要结构的示意图:

graph LR
    classDef process fill:#E5F6FF,stroke:#73A6FF,stroke-width
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化训练,到执行分类及结果优化的完整流程,并介绍了精度评价通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置结果后处理环节,充分利用ENVI Modeler进行自动化建模参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值