1、问题分析
在进行数据需求开发前,先要明确数据统计的详细口径。
1.1、需求说明
**需求:**统计商品的销售数量(不明确的示例)
存在的问题:需求表述过于简单,未明确指出统计商品销售数量的时间范围、商品类型等关键信息,导致统计的标准不清晰。需要产品团队进一步明确这些细节。
**需求:**统计淘宝电商平台上所有运动鞋类商品在过去一个季度内的销售数量。统计应包含通过平台完成的所有销售订单中的运动鞋数量(不包含退货、换货以及取消的订单)。
1.2、需求示例
2、定义数据口径
数据口径是指在数据统计和分析过程中,对数据的定义、计算方法、范围和标准等方面的详细规定。确保数据口径统一,是保证数据分析结果一致性和准确性的关键。
2.1、数据定义
指标名称:用户注册数;
指标释义:定义指标的具体含义,用户注册数是指在某一定时间内,通过平台注册的新用户数量;
2.2、计算方法
计算公式:具体的计算方法,用户注册数=注册成功的用户数-取消注册的用户数;
数据来源:明确数据来源,用户注册数的数据来源与用户注册系统的日志;
2.3、时间范围
统计周期:每天、每周、每月统计一次;
时间窗口:统计当日的数据,时间窗口为当天的00:00到23:59;
2.4、数据范围
地域范围:用户注册数是否包含全球用户,还是仅限某个国家或地区;
业务范围:是否包含所有业务线,还是仅统计某一特定业务线的数据;
2.5、数据标准
去重规则:如何处理重复数据,按用户ID去重;
异常处理:如何处理异常数据,剔除不合理数值(负值);
2.6、数据更新频率
实时更新:数据是否实时更新,实时统计注册用户数;
批量更新:数据是否按批次更新,每天凌晨1点更新前一天数据;
3、数据口径示例
4、小结
通过数详细的数据口径定义,可以确保不同团队或系统在统计和分析数据时,使用一致的标准和方法,从而提高数据的准确性和可比性。