大数据分析常用指标口径

本文介绍了大数据分析中常见的核心指标,包括新增用户、活跃用户、触发人数、时长及留存率。新增用户指首次使用产品的用户,活跃用户是一定时间内使用过产品的用户,触发人数是某一行为操作的人数,不计重复。时长分为使用时长分布和平均使用时长,留存率则分为新增用户留存、活跃用户留存和自定义留存。这些指标对于理解用户行为和产品性能至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用指标口径

1.新增用户

定义:首次使用产品的用户即为新增用户。

如何判定:在接入诸葛后,该用户第一次使用产品时,诸葛会将该用户记录下来,并将此用户定义为「新增用户」

技术判定: 对比诸葛的数据库,没有出现的cookie/设备号/账号,就是新增用户。

场景举例:JS的新增是只要打开网站就会记为新增,而app只有下载打开后才会被记为新增。

2.活跃用户

定义:使用过产品的用户

如何判定:在某段时间内使用过产品的用户被记录下来,多次启用过产品的不会重复计算

场景举例:如A公司6月23日7月4日期间的活跃用户位1890,那么就是在6月23日7月4日期间一共有1890人使用过产品,但是其中340名用户在此期间使用5次以上,但是记在计算活跃用户时不会重复计算,只会计算为1个。

3.触发人数

定义:在产品上对于某一行为的操作人数。

使用场景:如在某电商应用上,有「搜索」功能,此功能在6月1日有2309人进行过操作,那么触发人数就是2309,对于多次触发「搜索」功能的人不会重复计算。

人均触发次数
定义:在产品上对于某一行为的平均操作次数。

计算公式:人均触发次数 = 触发次数 / 触发人数

4.时长

使用时长分布
定义:使用产品的时长分布,是了解用户对产品使用情况的维度之一

分布区间:使用时长的分布区间为诸葛io根据数据情况等份划定。

平均使用时长
定义:使用应用的平均时长。

计算公式:平均使用时长 = 会话的总时长 / 会话次数

会话时长:用同一次访问内触发的最后一个事件的时间减去会话开始的时间。如果用户没有事件触发,那么时长就是1s。

5.留存/留存率

新增用户留存/留存率
定义:某段时间内的新增用户,经过一段时间后,仍然继续使用产品被称为新增留存;这部分用户占当时新增的比例就是留存率。

场景举例:某产品,1月份新增用户10000人;2月时10000人中还有8000人使用产品,则新增留存人数为8000,新增留存率为80%;3月份10000人中还有7000人使用产品,则新增留存人数为7000,新增留存率为70%。

活跃用户留存/留存率
定义:某段时间内的活跃用户,经过一段时间后,仍然继续活跃的用户被称为活跃留存;这部分活跃留存用户占当时活跃用户的比例就是活跃留存率。

场景举例:某产品,1月份的活跃用户数是10万人,2月时10万人中还有5万人活跃,则活跃留存人数为5万,活跃留存率为50%;3月份,10万人中还有4万人活跃,则活跃留存人数为4万,活跃留存率为40%。

自定义留存/留存率
定义:某段时间内,「初始行为」触发了某个事件的用户,经过一段时间后「回访行为」是触发另一事件的用户被称为自定义留存;此部分用户占触发「初始行为」的比例就是自定义留存率。

场景举例:某电商产品,6月份「初始行为」搜索商品的用户有1000人,7月份「回访行为」是加入购物车的用户有800人,则自定义留存为800,自定义留存率为80%;8月份「回访行为」是加入购物车的用户有500人,则自定义留存为500,自定义留存率为50%。

次日留存率
定义:新增用户在次日再次使用产品的比例。

场景举例:某产品,6月1日新增用户100人,6月2日使用产品的人数为70人,则次日留存为70人,次日留存率是70%。

7日留存/周留存
定义:新增用户在第7天再次使用产品的比例。

如何判定:诸葛io会严格按照每个用户在第7天是否使用产品,计算其周留存。

场景举例:某公司,6月1日新增用户100人,这100人中,6月7日仍在使用产品的人数为30人,则6月1日新增用户的周留存/7日留存为30%。如果用户在6月1日新增,只在6月5日时活跃过,那么周留存中时不把这部分用户计算在内的

<think>好的,用户问的是“快手数据分析师取平台是什么”。首先,我需要确定用户的需求是什么。可能他们想了解快手内部的数据分析工具,或者对数据分析平台感兴趣,想学习相关技术。也可能用户是求职者,想了解快手的岗位要求中的工具技能。 接下来,我需要回忆之前用户的历史对话。之前用户询问过R2R控制原理,回答中用了结构化的分点说明,用户可能习惯这种清晰的信息呈现方式。所以这次回答也应该保持类似的结构,分点介绍平台的定义、核心功能、技术架构、应用场景、优势、挑战等。 快手作为一家大型互联网公司,处理的据量肯定很大,所以取平台需要支持海量据的处理。数据分析师可能经常需要快速获取据进行分析,因此平台需要高效、易用。同时,可能涉及据安全、权限管理等问题,这也是需要注意的点。 需要确认“取平台”具体指什么。通常来说,这类平台可能包括据查询、可视化、自动化报表、据仓库接口等功能。可能涉及的技术包括分布式计算(如Hadoop、Spark)、OLAP引擎(如ClickHouse、Doris)、据治理工具等。 用户可能的深层需求是想了解如何构建或优化类似的据平台,或者作为数据分析师需要掌握哪些工具。因此,在回答中可以提到平台的技术架构,这样有技术背景的用户能获得更深入的信息。 另外,要避免过于技术化的术语,保持解释的易懂性,同时也要准确。比如解释“据湖”和“据仓库”的区别,可能需要简要说明。还要注意快手可能有的定制化功能,比如支持短视频、直播等业务场景的特殊需求。 需要检查是否有最新的信息,比如快手是否有公开的资料介绍他们的据平台。如果没有,就基于通用的数据分析平台结构来回答,但指出这是基于行业常见实践的推测。 最后,确保回答结构清晰,分点明确,每个部分有子项,帮助用户快速找到所需信息。同时,使用中文,避免Markdown格式,保持口语化,但不过于随意,保持专业性。</think>### 一、快手数据分析师取平台概述 **快手数据分析师取平台** 是快手内部为数据分析师、业务团队等提供据查询、分析及可视化的工具集合,旨在通过高效、灵活的据服务支持业务决策。该平台通常整合了据仓库、ETL工具、可视化系统等模块,帮助用户从海量据中快速提取关键信息。 --- ### 二、核心功能与特点 1. **据查询与提取** - **SQL查询**:支持通过编写SQL语句直接访问据仓库(如Hive、ClickHouse等)。 - **自助取**:提供可视化界面选择据表、字段和过滤条件,降低SQL使用门槛。 - **预置据集**:常用业务指标(如DAU、留存率、视频播放量)已预计算,可快速调用。 2. **数据分析与可视化** - **交互式分析**:支持动态维度下钻(如按时间、地域、用户分群等)。 - **报表生成**:自动生成日报/周报,支持自定义图表(折线图、热力图等)。 - **A/B测试分析**:集成实验平台据,对比实验组与对照组的核心指标差异。 3. **工程化支持** - **任务调度**:定时跑批任务,自动更新据看板。 - **据权限管理**:根据角色控制敏感据的访问权限(如用户隐私据)。 - **性能优化**:针对海量据(PB级)提供缓存加速、查询引擎优化(如Presto/Spark)。 --- ### 三、技术架构(典型组成) 1. **据存储层** - **据湖**:原始日志存储(HDFS/S3)。 - **据仓库**:结构化据存储(Hive/ClickHouse/Doris)。 2. **计算引擎** - 批处理:Hive/Spark - 实时计算:Flink/Kafka 3. **应用层** - 可视化工具:Superset/Tableau(或自研BI系统) - 元据管理:Atlas/DataHub - 任务调度:Airflow/DolphinScheduler --- ### 四、典型应用场景 1. **业务监控** - 实时追踪短视频播放量、直播GMV等核心指标。 - 预警异常波动(如某地区用户活跃度骤降)。 2. **用户行为分析** - 分析用户观看时长、互动行为(点赞/评论/分享)。 - 构建用户画像(如“高付费意愿群体”)。 3. **策略评估** - 评估算法推荐效果(如CTR提升情况)。 - 验证运营活动ROI(如拉新补贴的投入产出比)。 --- ### 五、优势与挑战 1. **优势** - **效率提升**:将取时间从小时级缩短至分钟级。 - **降低门槛**:非技术人员可通过拖拽生成分析报表。 - **统一口径**:避免“同一指标多个定义”的问题。 2. **挑战** - **据质量**:需治理埋点缺失、据延迟等问题。 - **资源竞争**:高并发查询时易引发集群性能瓶颈。 - **安全合规**:需满足GDPR等据隐私保护要求。 --- ### 六、实例说明 **场景**:分析某新功能上线后的用户留存率 1. **取阶段**: - 在平台选择“用户行为表”,过滤功能使用人群。 - 提取首日使用用户ID及后续7日活跃状态。 2. **分析阶段**: - 计算次日、7日留存率,对比历史版本据。 - 通过桑基图可视化用户流失路
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值