看 BBR 的理想图示:
但现实中数据包到达并非绝对均匀,考虑统计突发,实际情况如下:
后文将 Delivery Rate 设为 B(Bandwidth),将 RTT 设为 D(Delay)。
B/inflt 曲线一定上凸,可想象 1 个 inflt 只有一种到达方式,带来 1 个 B 增益,2 个 inflt 在 2 个时间槽可排列 (0, 2),(1, 1),凡带 0 组合,都有浪费处理周期,3 个 inflt 在 3 个时间槽可排列 (3, 0, 0),(2, 1, 0),(1, 1, 1),随 inflt 增加,“到达方式” 中全 1 的满载槽占比减少,分别为 1/1,1/2,1/3,1/4,1/5 … 这意味着 B/inflt 中 B 的有效增益随 inflt 减少,故上凸。
同理,D/inflt 曲线一定下凸。最终拟合两张图,得右图。放大右图:
B 越大,D 越小,是永恒追求,吞吐越大越好,延时越小越好,可定义其比值,追求 B/D 最大。
在 D/B 曲线上取一点 P(x,y),连接 OP,OP 与 B 轴夹角越小,b/d 越大,经过 O 与 D/B 曲线相切的直线与曲线的切点 M(a,b) 即为 b/d 最大的点。
BBR 在 B = a,D = b 时拥有最佳效能。
M 将平面切成 4 个象限,第 2,4 象限不可达,第 1,3 象限的 b/d 均比 M 点小,但原因不同。
在第 1 象限,b/d 小的原因是 d 过大,在第 3 象限,b/d 小的原因是 b 过小:
- 第 1 象限:b/d 单调递减,分子分母均增加,b/d 渐小因分母 d 增大更快主导。
- 第 3 象限:b/d 单调递增,分子分母均增加,b/d 渐大因分子 b 增大更快主导 。
M 点为何发生转折,因为排队。
分子增大 b/d 渐大转入分母增大 b/d 渐小,正是经过不排队到排队的转换,虽统计复用系统没有绝对不排队,但显然 M 点正是统计不排队到正式排队之间的转折,即证明了 BBR 操作点是最佳的,优于 AIMD-Based 的 Reno/CUBIC。
通篇没依赖泊松分布和指数分布,这是一个普适结论。
这是 BBR 总体理论,至于 BBRv2 引入的 MD,只是修复公平性,并非真正意义的 v2。
很多年前写过一篇 Google BBR拥塞控制算法背后的数学解释,太啰嗦。本文不用公式表达同样的意思,非常直观。自诩摆置坐标系的好把式,一切都可以画个坐标系解释。
浙江温州皮鞋湿,下雨进水不会胖。