计算和传输之间的权衡

如果将计算机系统的门电路组成的任意尺度的网络看作一个过滤器,在该网络中的任意两点之间,传输与计算间如何权衡。

一个大尺度的例子,将 n 个数字排序后传输到远端,还是将 n 个数字任意传输到远端后在远端排序,哪个划算。答案显而易见,后者更划算,假设绝对无丢包,至少在后者传输过程中,可以用 UDP 乱序传输,而 UDP 比 TCP 成本更低。

一个小尺度的例子,将 2 个 int 型从内存 load 到寄存器,相加后再 store 回内存,这个过程中哪个环节最耗能。CPU 的各级 cache 的意义正基于此。

可以猜想,数据总量一定时,传输原始数据后再计算,比先计算再传输计算结果成品更具有性价比。简单来讲,即优先在本地现场计算,而不是优先依靠远端传输结果,这个猜想是有根据的。

先看一个行业外的共识,饮料,服装等原材料廉价但成本贵的商品,一般都是就地生产,但可能远程运输原材料,远至欧美大殖民时代三角贸易也是如此,这背后也是一个收益成本的考虑,与本文讨论的一致。即生产(计算)是本地的,原材料(原始数据)可能是远端的,但生产(计算)决不在远端进行,这意味不管是生产运输还是计算传输,背后都是同一个共识,运输成品或传输结果成本高昂。

用状态和熵的概念去理解这个共识。

将时空的世界一起看成一个整体,经过加工计算的成品或结果是被注入了负熵的低熵体,整个过程中,生成该低熵体的成本是一定的,区别仅在于这个成本是在本地还是分布式成本的集合,运输成品或传输等效于在更大的时空维持该低熵体在一个特定状态,这意味着传输过程需要额外的持续消耗(负熵),这就是额外的成本。

我在 时延抖动的物理本质 一文中提到过数据传输中时延和抖动的本质,与本文的成本因素关联,始终在时空中进行的传输成本归根结底还是时间代表的熵增。既然纯计算成本省不了,传输的内容越低熵,成本就越高。所以,尽量不传输,非要传输就传输高熵数据。

尽量在本地做计算,无论尺度如何,都要避免频繁 load & store,至于分布式计算,更要规划网络路径,特别是 GPU 参与的计算,相比 CPU 而言,与数据传输相比,本地计算更具有高性价比。

传输的成本真的很高,我此前提到过,最好不要做传输,非要传输的话就尽可能少传输,尽可能传浅加工数据,优先本地计算,甚至本地猜测,传输优选压缩,字典,都是减少传输数据量的方法。

总体而言,在物理意义上,距离就是能耗,距离越远,能耗越高,想象一下用脉冲电压驱动线缆就能直观理解,1cm 的线缆和 1000m 的线缆,同样脉冲而耗电不同。我们很早就学过物体做功,距离仍是狠变量。

我前年写过一篇 内存墙的本质,总结得不错。

归根结底,能耗就是时延,时延就是能耗,都由熵衡量。而传输时延在直观上一方面决定于距离,另一方面决定于存储 IO,在上述引文中,我将 DRAM 存储行为最终归结为了一系列步骤的计算,而计算则是空间展开的压缩,空间则被距离度量,这就完全统一到距离引发的熵的度量了,传输,存储,计算只是展开方式不同罢了,归于一处都是熵增,都是能耗,而数传输的距离正相关性最大,也就最不可扩展。

传输的能耗很大,尽量不要传输。在这套共识下,把计算资源主动靠向原材料就像可口可乐,农夫山泉了,也就是存内计算,存算一体,就合理了。

浙江温州皮鞋湿,下雨进水不会胖。

裂缝目标检测数据集 一、基础信息 数据集名称:裂缝目标检测数据集 图片数量: 训练集:462张图片 验证集:21张图片 测试集:9张图片 总计:492张图片 分类类别: crack(裂缝):指物体表面的裂缝,常见于建筑、基础设施等场景,用于损伤检测风险评估。 标注格式: YOLO格式,包含边界框类别标签,适用于目标检测任务。 数据格式:图片来源于实际场景,格式兼容常见深度学习框架。 二、适用场景 建筑与基础设施检查: 数据集支持目标检测任务,帮助构建能够自动识别裂缝区域的AI模型,用于建筑物、道路、桥梁等结构的定期健康监测维护。 工业检测与自动化: 集成至智能检测系统,实时识别裂缝缺陷,提升生产安全效率,适用于制造业、能源等领域。 风险评估与保险应用: 支持保险工程行业,对裂缝进行自动评估,辅助损伤分析风险决策。 学术研究与技术开发: 适用于计算机视觉与工程领域的交叉研究,推动目标检测算法在现实场景中的创新应用。 三、数据集优势 精准标注与任务适配: 标注基于YOLO格式,确保边界框定位准确,可直接用于主流深度学习框架(如YOLO、PyTorch等),简化模型训练流程。 数据针对性强: 专注于裂缝检测类别,数据来源于多样场景,覆盖常见裂缝类型,提升模型在实际应用中的鲁棒性。 实用价值突出: 支持快速部署于建筑监测、工业自动化等场景,帮助用户高效实现裂缝识别与预警,降低维护成本。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值