题意:
题解:
这名称真是对一个在大半个月前会考了的理科生极度不友好。
sb题没看出来我是不是该原地退役了啊
显然有一个贪心策略:每次拿走最大的数。然后就有了50%的暴力做法:用优先队列维护。
但是这
O
(
n
k
log
n
)
O(nk\log n)
O(nklogn)显然过不去。我们需要砍掉一个log。
然后就是我考试时想了很久都没想出来的一坨东西。
每次还有元素时我们拿掉一个元素之后会补上一个元素对吧。
我们假装把集合的大小-1.然后另外维护一下在集合中的数的最大值和每个数出现在集合的次数。每进来一个数就和最大值比一下大小。
如果这个数比最大值还大,那么取这个数。
否则取最大值,修改cnt。如果cnt=0,暴力修改最大值。然后就变成
O
(
n
k
)
O(nk)
O(nk)了。
为什么要-1?因为要先取数再补上。这样的话就相当于是题目中的操作了。在上述第一种情况中就是取走了集合中最后加进来的那个数。第二种情况就是取走了前面加进来的一坨数之一。
代码:(有一坨数组是没用的)
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define maxn 100005
#define LL long long
using namespace std;
int n,k,a[maxn],a1[maxn],rk[maxn],b[maxn],cnt[maxn];
priority_queue<int> q;
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
while(k--)
{
int siz,maxx=0,trn=0; LL sa=0,sb=0;
scanf("%d",&siz);
for(int i=1;i<siz;i++) cnt[a[i]]++,maxx=max(maxx,a[i]);
for(int i=siz;i<=n;i++)
{
if(a[i]>=maxx)
{
if(!trn) sa+=a[i];
else sb+=a[i];
}
else
{
if(!trn) sa+=maxx;
else sb+=maxx;
cnt[maxx]--,cnt[a[i]]++;
if(!cnt[maxx])
for(;maxx&&!cnt[maxx];maxx--);
}
trn^=1;
}
for(int i=maxx;i;i--)
for(;cnt[i];cnt[i]--)
{
if(!trn) sa+=i;
else sb+=i;
trn^=1;
}
printf("%lld\n",sa-sb);
}
}