Add AI feature to Xamarin.Forms app


Now, AI is one of important technologies.
Almost all platforms have API sets of AI. Following list is technology names per platform.

  • Windows 10: Windows ML
  • Android: TensorFlow
  • iOS: CoreML

Xamarin can call native API sets using C#. It means you can implement AI feature on your app using Xamarin. This article will be introducing how to use AI APIs with Xamarin.Forms.

Create a project

Open Visual Studio 2017, then create a new project that is Mobile App (Xamarin.Form) of Cross-Platform category. And then select Blank, select Android, iOS, Windows(UWP) and .NET Standard.


Create a Xamarin.Forms project

Add base feature that exclude AI to here. I'll use a take photo feature in this app. So, add Xam.Plugin.Media NuGet package to all projects, then setup projects in accordance with the readme file shown. And then edit MainPage.xaml like below:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage
    x:Class="AIApp.MainPage"
    xmlns="http://xamarin.com/schemas/2014/forms"
    xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
    xmlns:ios="clr-namespace:Xamarin.Forms.PlatformConfiguration.iOSSpecific;assembly=Xamarin.Forms.Core"
    xmlns:local="clr-namespace:AIApp"
    Title="Safe Area"
    ios:Page.UseSafeArea="True">

    <StackLayout>
        <Image
            x:Name="picture"
            Aspect="AspectFill"
            VerticalOptions="FillAndExpand" />
        <Label x:Name="output" HorizontalOptions="CenterAndExpand" />
        <StackLayout Orientation="Horizontal">
            <Button
                Clicked="PickPhotoButton_Clicked"
                HorizontalOptions="FillAndExpand"
                Text="Pick a picture" />
            <Button
                Clicked="TakePhotoButton_Clicked"
                HorizontalOptions="FillAndExpand"
                Text="Take a picture" />
        </StackLayout>
    </StackLayout>

</ContentPage>

At next, edit the code behind like below:

using Plugin.Media;
using Plugin.Media.Abstractions;
using System;
using System.Threading.Tasks;
using Xamarin.Forms;

namespace AIApp
{
    public partial class MainPage : ContentPage
    {
        public MainPage()
        {
            InitializeComponent();
        }

        private async void TakePhotoButton_Clicked(object sender, EventArgs e)
        {
            await ProcessPhotoAsync(true);
        }

        private async void PickPhotoButton_Clicked(object sender, EventArgs e)
        {
            await ProcessPhotoAsync(false);
        }

        private async Task ProcessPhotoAsync(bool useCamera)
        {
            await CrossMedia.Current.Initialize();
            if (useCamera ? !CrossMedia.Current.IsTakePhotoSupported : !CrossMedia.Current.IsPickPhotoSupported)
            {
                await DisplayAlert("Info", "Your phone doesn't support photo feature.", "OK");
                return;
            }

            var photo = useCamera ? 
                await CrossMedia.Current.TakePhotoAsync(new StoreCameraMediaOptions()) : 
                await CrossMedia.Current.PickPhotoAsync();
            if (photo == null)
            {
                picture.Source = null;
                return;
            }

            picture.Source = ImageSource.FromFile(photo.Path);

            var service = DependencyService.Get<IPhotoDetector>();
            if (service == null)
            {
                await DisplayAlert("Info", "Not implemented the feature on your device.", "OK");
                return;
            }

            using (var s = photo.GetStream())
            {
                var result = await service.DetectAsync(s);
                output.Text = $"It looks like a {result}";
            }
        }
    }
}

In this code, using IPhotoDetector interface to detect a photo. The interface is just a method that is DetectAsync.

using System.IO;
using System.Threading.Tasks;

namespace AIApp
{
    public interface IPhotoDetector
    {
        Task<FriesOrNotFriesTag> DetectAsync(Stream photo);
    }

    public enum FriesOrNotFriesTag
    {
        None,
        Fries,
        NotFries,
    }
}

Create ML models

I use Microsoft Cognitive Services Custom Vision(https://customvision.ai) to create ML models. Create Fries and NotFries tags on the project of Custom Vision.
Custom Vision service has a feature that generate CoreML, TensorFlow and ONNX files. Please read the following document to know more information.

Export your model for use with mobile devices | Microsoft Docs

The point is that select General (compact) of Domains category when creating project.


Create new project

After training the model, you can export the ML models from Export button at Performance tab.


Export models

Choose your platform

Add Windows 10 implementation

Windows 10 has Windows ML feature.

Windows Machine Learning | Microsoft Docs

Add the onnx file to Assets folder on the UWP project, then generated a C# file for use the onnx file.


Add an ONNX model

Add PhotoDetector.cs file to UWP project, and then edit the file like below:

using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Windows.AI.MachineLearning;
using Windows.Graphics.Imaging;
using Windows.Media;
using Windows.Storage;
using Xamarin.Forms;

[assembly: Dependency(typeof(AIApp.UWP.PhotoDetector))]
namespace AIApp.UWP
{
    public class PhotoDetector : IPhotoDetector
    {
        private FriesOrNotFriesModel _model;
        public async Task DetectAsync(Stream photo)
        {
            await InitializeModelAsync();
            var bitmapDecoder = await BitmapDecoder.CreateAsync(photo.AsRandomAccessStream());
            var output = await _model.EvaluateAsync(new FriesOrNotFriesInput
            {
                data = ImageFeatureValue.CreateFromVideoFrame(VideoFrame.CreateWithSoftwareBitmap(await bitmapDecoder.GetSoftwareBitmapAsync())),
            });
            var label = output.classLabel.GetAsVectorView().FirstOrDefault();
            return Enum.Parse(label);
        }

        private async Task InitializeModelAsync()
        {
            if (_model != null)
            {
                return;
            }

            var onnx = await StorageFile.GetFileFromApplicationUriAsync(new Uri("ms-appx:///Assets/FriesOrNotFries.onnx"));
            _model = await FriesOrNotFriesModel.CreateFromStreamAsync(onnx);
        }
    }
}

Add Android implementation

On Android platform, TensorFlow is popular library. In Java or Kotlin, there is tensorflow-android library.

TensorFlow AAR For Android Inference Library and Java API | Maven Repository

On Xamarin, there is wrapper library.

Xam.Android.Tensorflow | NuGet

The library was introduced following article of Xamarin Blog.

Using TensorFlow and Azure to Add Image Classification to Your Android Apps | Xamarin Blog

Add a model file and label file to Android project.


Add TensorFlow model

At next, I add the library to Android project, then create PhotoDetector.cs file to the project. At next, edit the file like below:

using Android.Graphics;
using Org.Tensorflow.Contrib.Android;
using Plugin.CurrentActivity;
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Xamarin.Forms;

[assembly: Dependency(typeof(AIApp.Droid.PhotoDetector))]
namespace AIApp.Droid
{
    public class PhotoDetector : IPhotoDetector
    {
        private static readonly string ModelFile = "model.pb";
        private static readonly string LabelFile = "labels.txt";
        private static readonly string InputName = "Placeholder";
        private static readonly string OutputName = "loss";
        private static readonly int InputSize = 227;
        private readonly TensorFlowInferenceInterface _inferenceInterface;
        private readonly string[] _labels;

        public PhotoDetector()
        {
            _inferenceInterface = new TensorFlowInferenceInterface(CrossCurrentActivity.Current.Activity.Assets, ModelFile);
            using (var sr = new StreamReader(CrossCurrentActivity.Current.Activity.Assets.Open(LabelFile)))
            {
                _labels = sr.ReadToEnd().Split('\n').Select(x => x.Trim()).Where(x => !string.IsNullOrEmpty(x)).ToArray();
            }
        }

        public async Task DetectAsync(Stream photo)
        {
            var bitmap = await BitmapFactory.DecodeStreamAsync(photo);
            var floatValues = GetBitmapPixels(bitmap);
            var outputs = new float[_labels.Length];
            _inferenceInterface.Feed(InputName, floatValues, 1, InputSize, InputSize, 3);
            _inferenceInterface.Run(new[] { OutputName });
            _inferenceInterface.Fetch(OutputName, outputs);
            var index = Array.IndexOf(outputs, outputs.Max());
            return (FriesOrNotFriesTag)Enum.Parse(typeof(FriesOrNotFriesTag), _labels[index]);
        }

        private async Task LoadByteArrayFromAssetsAsync(string name)
        {
            using (var s = CrossCurrentActivity.Current.Activity.Assets.Open(name))
            using (var ms = new MemoryStream())
            {
                await s.CopyToAsync(ms);
                ms.Seek(0, SeekOrigin.Begin);
                return ms.ToArray();
            }
        }

        private static float[] GetBitmapPixels(Bitmap bitmap)
        {
            var floatValues = new float[InputSize * InputSize * 3];
            using (var scaledBitmap = Bitmap.CreateScaledBitmap(bitmap, InputSize, InputSize, false))
            {
                using (var resizedBitmap = scaledBitmap.Copy(Bitmap.Config.Argb8888, false))
                {
                    var intValues = new int[InputSize * InputSize];
                    resizedBitmap.GetPixels(intValues, 0, resizedBitmap.Width, 0, 0, resizedBitmap.Width, resizedBitmap.Height);
                    for (int i = 0; i > 8) & 0xFF) - 117);
                        floatValues[i * 3 + 2] = (((val >> 16) & 0xFF) - 123);
                    }
                    resizedBitmap.Recycle();
                }
                scaledBitmap.Recycle();
            }

            return floatValues;
        }
    }
}

Add iOS implementation

The last platform is iOS. iOS has CoreML feature.

Core ML | Apple Developer Documentation

In Xamarin platform, you can use CoreML APIs. The documentation is below:

Introduction to CoreML in Xamarin.iOS | Microsoft Docs

Add the CoreML file to Resources folder of iOS project, and set CoreMLModel to Build Action.


Add CoreML file

At next, add PhotoDetector.cs to iOS project, then edit the file like below:

using CoreFoundation;
using CoreImage;
using CoreML;
using Foundation;
using System;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Vision;
using Xamarin.Forms;

[assembly: Dependency(typeof(AIApp.iOS.PhotoDetector))]
namespace AIApp.iOS
{
    public class PhotoDetector : IPhotoDetector
    {
        private readonly MLModel _mlModel;
        private readonly VNCoreMLModel _model;

        public PhotoDetector()
        {
            var assetPath = NSBundle.MainBundle.GetUrlForResource("FriesOrNotFries", "mlmodelc");
            _mlModel = MLModel.Create(assetPath, out var _);
            _model = VNCoreMLModel.FromMLModel(_mlModel, out var __);
        }

        public Task DetectAsync(Stream photo)
        {
            var taskCompletionSource = new TaskCompletionSource();
            void handleClassification(VNRequest request, NSError error)
            {
                var observations = request.GetResults();
                if (observations == null)
                {
                    taskCompletionSource.SetException(new Exception("Unexpected result type from VNCoreMLRequest"));
                    return;
                }

                if (!observations.Any())
                {
                    taskCompletionSource.SetResult(FriesOrNotFriesTag.None);
                    return;
                }

                var best = observations.First();
                taskCompletionSource.SetResult((FriesOrNotFriesTag)Enum.Parse(typeof(FriesOrNotFriesTag), best.Identifier));
            }

            using (var data = NSData.FromStream(photo))
            {
                var ciImage = new CIImage(data);
                var handler = new VNImageRequestHandler(ciImage, new VNImageOptions());
                DispatchQueue.DefaultGlobalQueue.DispatchAsync(() =>
                {
                    handler.Perform(new VNRequest[] { new VNCoreMLRequest(_model, handleClassification) }, out var _);
                });
            }

            return taskCompletionSource.Task;
        }
    }
}

How does it run?

This is results run on Windows 10.


Chirashi sushi is not fries, French fries is fries.

On Android:


French fries is fries, Fried egg is not fries.

On iOS:


French fries is fries, Soup is not fries.

Conclusion

AI is very important technology. You can use it your apps on all platforms.
If you created apps using Xamarin, then you could add the AI feature by steps of this article.

Have a good programing.

转载于:https://www.cnblogs.com/Javi/p/10218176.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值