Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
For example,
Consider the following matrix:
[ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ]
Given target = 3
, return true
.
Solution:
Regard the 2D matrix as a sorted array and use binary search. Convert mid to the 2D index.
Time complexity: O(log(m+n))
Space complexity: O(1)
public class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
int row = matrix.length;
int col = matrix[0].length;
int start = 0;
int end = row * col - 1;
int mid;
while (start + 1 < end) {
mid = start + (end - start) / 2;
if (target < matrix[mid / col][mid % col]) {
end = mid;
} else if (target > matrix[mid / col][mid % col]){
start = mid;
} else {
return true;
}
}
if (target == matrix[start / col][start % col] || target == matrix[end / col][end % col]) {
return true;
}
return false;
}
}