chase2译码算法+bch

本文通过MATLAB实现了一种结合BCH码和Chase2译码算法的方法,通过仿真分析了不同SNR下硬译码、BCH译码以及Chase2译码的误码率性能,探讨了Chase2译码在不可靠位选择策略上的影响。
摘要由CSDN通过智能技术生成

SNR=(2:1:10);
N_trials=10000;
N=255;
k=239;  
qnumber=[2,4];%最不可靠位数
Eb=1;
a=zeros(N_trials,length(SNR));
ber_m=zeros(length(qnumber),length(SNR));
ber_m0=zeros(1,length(SNR));%硬译码
ber_m1=zeros(1,length(SNR));%bch译码
for trial=1:1:N_trials
    msg=round(rand(1,k)); %生成信号
    s=bchenc(gf(msg),N,k);%编成bch码
    s0=s.x;
    bit_s=0;              %奇偶校验位
    for i=1:1:k
        bit_s=bitxor(bit_s,s0(i));
    end
    s1=1-double([s0,bit_s])*2;      %带奇偶校验位的bch码
    n1=randn(1,N+1)+j.*randn(1,N+1);%初始噪声
    
    ber_v=zeros(length(qnumber),length(SNR));
    ber_v0=zeros(1,length(SNR));
    ber_v1=zeros(1,length(SNR));
    for w=1:1:length(SNR)
        snr_dB=SNR(w);
        snr1=10.^(snr_dB./10)/(k/(N+1));
        N01&#

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值