SNR=(2:1:10);
N_trials=10000;
N=255;
k=239;
qnumber=[2,4];%最不可靠位数
Eb=1;
a=zeros(N_trials,length(SNR));
ber_m=zeros(length(qnumber),length(SNR));
ber_m0=zeros(1,length(SNR));%硬译码
ber_m1=zeros(1,length(SNR));%bch译码
for trial=1:1:N_trials
msg=round(rand(1,k)); %生成信号
s=bchenc(gf(msg),N,k);%编成bch码
s0=s.x;
bit_s=0; %奇偶校验位
for i=1:1:k
bit_s=bitxor(bit_s,s0(i));
end
s1=1-double([s0,bit_s])*2; %带奇偶校验位的bch码
n1=randn(1,N+1)+j.*randn(1,N+1);%初始噪声
ber_v=zeros(length(qnumber),length(SNR));
ber_v0=zeros(1,length(SNR));
ber_v1=zeros(1,length(SNR));
for w=1:1:length(SNR)
snr_dB=SNR(w);
snr1=10.^(snr_dB./10)/(k/(N+1));
N01&#
chase2译码算法+bch
最新推荐文章于 2024-03-01 20:00:31 发布
本文通过MATLAB实现了一种结合BCH码和Chase2译码算法的方法,通过仿真分析了不同SNR下硬译码、BCH译码以及Chase2译码的误码率性能,探讨了Chase2译码在不可靠位选择策略上的影响。
摘要由CSDN通过智能技术生成