神经网络汇聚层

本文介绍了深度学习中三种主要的池化层——最大汇聚层、平均汇聚层以及自适应平均池化层的工作原理。最大汇聚层计算每个窗口内的最大值,平均汇聚层则计算平均值。自适应池化层根据输出尺寸动态调整窗口大小,适用于不同分辨率输入的处理。
摘要由CSDN通过智能技术生成

最大汇聚层

汇聚窗口从输入张量的左上角开始,从左往右、从上往下的在输入张量内滑动。在汇聚窗口到达的每个位置,它计算该窗口中输入子张量的最大值或平均值。计算最大值或平均值是取决于使用了最大汇聚层还是平均汇聚层。
在这里插入图片描述
可以设定一个任意大小的矩形汇聚窗口,并分别设定填充和步幅的高度和宽

pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))

平均汇聚层

在这里插入图片描述

 nn.AvgPool2d(kernel_size=2, stride=2)

自适应平均池化层

nn.AdaptiveAvgPool2d()

这个层可以生成任意大小的输出特征图,而不需要指定池化窗口的大小。
你只需要指定输出特征图的尺寸(output_size),自适应池化层会自动计算池化窗口的大小和步长,以适应输入特征图的尺寸。
这种方式使得模型能够更好地适应不同尺寸的输入,同时保持输出尺寸的一致性。
自适应池化层特别适用于需要固定尺寸输出的场景,例如在处理不同分辨率的图像时,或者在将特征图送入全连接层之前。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值