计算机视觉专业名词中英文对照(转)

转自 https://blog.csdn.net/liuxiao214/article/details/78125539

Common

人工智能 Artificial Intelligence
认知科学与神经科学Cognitive Science and Neuroscience
图像处理Image Processing
计算机图形学Computer graphics
模式识别Pattern Recognized
图像表示Image Representation
立体视觉与三维重建Stereo Vision and 3D Reconstruction
物体(目标)识别Object Recognition
运动检测与跟踪Motion Detection and Tracking
边缘edge
边缘检测detection
区域region
图像分割segmentation
轮廓与剪影contour and silhouette
纹理texture
纹理特征提取feature extraction
颜色color
局部特征local features or blob
尺度scale
摄像机标定Camera Calibration
立体匹配stereo matching
图像配准Image Registration
特征匹配features matching
物体识别Object Recognition
人工标注Ground-truth
自动标注Automatic Annotation
运动检测与跟踪Motion Detection and Tracking
背景剪除Background Subtraction
背景模型与更新background modeling and update
运动跟踪Motion Tracking
多目标跟踪multi-target tracking
颜色空间color space
色调Hue
色饱和度Saturation
明度Value
颜色不变性Color Constancy(人类视觉具有颜色不变性)
照明illumination
反射模型Reflectance Model
明暗分析Shading Analysis
成像几何学与成像物理学Imaging Geometry and Physics
全像摄像机Omnidirectional Camera
激光扫描仪Laser Scanner
透视投影Perspective projection
正交投影Orthopedic projection
表面方向半球Hemisphere of Directions
立体角solid angle
透视缩小效应foreshortening
辐射度radiance
辐照度irradiance
亮度intensity
漫反射表面、Lambertian(朗伯)表面diffuse surface
镜面Specular Surfaces
漫反射率diffuse reflectance
明暗模型Shading Models
环境光照ambient illumination
互反射interreflection
反射图Reflectance Map
纹理分析Texture Analysis
元素elements
基元primitives
纹理分类texture classification
从纹理中恢复图像shape from texture
纹理合成synthetic
图形绘制graph rendering
图像压缩image compression
统计方法statistical methods
结构方法structural methods
基于模型的方法model based methods
分形fractal
自相关性函数autocorrelation function
熵entropy
能量energy
对比度contrast
均匀度homogeneity
相关性correlation
上下文约束contextual constraints
Gibbs随机场吉布斯随机场
边缘检测、跟踪、连接Detection、Tracking、Linking
LoG边缘检测算法(墨西哥草帽算子)LoG=Laplacian of Gaussian
霍夫变化Hough Transform
链码chain code
B-样条B-spline
有理B-样条Rational B-spline
非均匀有理B-样条Non-Uniform Rational B-Spline
控制点control points
节点knot points
基函数basis function
控制点权值weights
曲线拟合curve fitting
内插interpolation
逼近approximation
回归Regression
主动轮廓Active Contour Model or Snake
图像二值化Image thresholding
连通成分connected component
数学形态学mathematical morphology
结构元structuring elements
膨胀Dilation
腐蚀Erosion
开运算opening
闭运算closing
聚类clustering
分裂合并方法split-and-merge
区域邻接图region adjacency graphs
四叉树quad tree
区域生长Region Growing
过分割over-segmentation
分水岭watered
金字塔pyramid
亚采样sub-sampling
尺度空间Scale Space
局部特征Local Features
背景混淆clutter
遮挡occlusion
角点corners
强纹理区域strongly textured areas
二阶矩阵Second moment matrix
视觉词袋bag-of-visual-words
类内差异intra-class variability
类间相似性inter-class similarity
生成学习Generative learning
判别学习discriminative learning
人脸检测Face detection
弱分类器weak learners
集成分类器ensemble classifier
被动测距传感passive sensing
多视点Multiple Views
稠密深度图dense depth
稀疏深度图sparse depth
视差disparity
外极epipolar
外极几何Epipolor Geometry
校正Rectification
归一化相关NCC Normalized Cross Correlation
平方差的和SSD Sum of Squared Differences
绝对值差的和SAD Sum of Absolute Difference
俯仰角pitch
偏航角yaw
扭转角twist
高斯混合模型Gaussian Mixture Model
运动场motion field
光流optical flow
贝叶斯跟踪Bayesian tracking
粒子滤波Particle Filters
颜色直方图color histogram
尺度不变特征转换SIFT scale invariant feature transform
孔径问题Aperture problem

A

Aberration 像差
Accessory 附件
Accessory Shoes 附件插座、热靴
Achromatic 消色差的
Active 主动的、有源的
Acutance 锐度
Acute-matte 磨砂毛玻璃
Adapter 适配器
Advance system 输片系统
AE Lock(AEL) 自动曝光锁定
AF(Autofocus) 自动聚焦
AF Illuminator AF照明器
AF spotbeam projector AF照明器
Alkaline 碱性
Ambient light 环境光
Amplification factor 放大倍率
Angle finder 弯角取景器
Angle of view 视角
Anti-Red-eye 防红眼
Aperture 光圈
Aperture priority 光圈优先
APO(APOchromat) 复消色差
APZ(Advanced Program zoom) 高级程序变焦
Arc 弧形
ASA(American Standards Association) 美国标准协会
Astigmatism 像散
Auto bracket 自动包围
Auto composition 自动构图
Auto exposure 自动曝光
Auto exposure bracketing 自动包围曝光
Auto film advance 自动进片
Auto flash 自动闪光
Auto loading 自动装片
Auto multi-program 自动多程序
Auto rewind 自动退片
Auto wind 自动卷片
Auto zoom 自动变焦
Automatic exposure(AE) 自动曝光
Automation 自动化
Auxiliary 辅助

B

Back 机背
Back light 逆光、背光
Back light compensation 逆光补偿
Background 背景
Balance contrast 反差平衡
Bar code system 条形码系统
Barrel distortion 桶形畸变
BAse-Stored Image Sensor (BASIS) 基存储影像传感器
Battery check 电池检测
Battery holder 电池手柄
Bayonet 卡口
Bellows 皮腔
Blue filter 蓝色滤光镜
Body-integral 机身一体化
Bridge camera 桥梁相机
Brightness control 亮度控制
Built in 内置
Bulb B 门
Button 按钮

C

Cable release 快门线
Camera 照相机
Camera shake 相机抖动
Cap 盖子
Caption 贺辞、祝辞、字幕
Card 卡
Cartridges 暗盒
Case 机套
CCD(Charge Coupled Device) 电荷耦合器件
CdS cell 硫化镉元件
Center spot 中空滤光镜
Center weighted averaging 中央重点加权平均
Chromatic Aberration 色差
Circle of confusion 弥散圆
Close-up 近摄
Coated 镀膜
Compact camera 袖珍相机
Composition 构图
Compound lens 复合透镜
Computer 计算机
Contact 触点
Continuous advance 连续进片
Continuous autofocus 连续自动聚焦
Contrast 反差、对比
Convetor 转换器
Coreless 无线圈
Correction 校正
Coupler 耦合器
Coverage 覆盖范围
CPU(Central Processing Unit) 中央处理器
Creative expansion card 艺术创作软件卡
Cross 交叉
Curtain 帘幕
Customized function 用户自选功能

D

Data back 数据机背
Data panel 数据面板
Dedicated flash 专用闪光灯
Definition 清晰度
Delay 延迟、延时
Depth of field 景深
Depth of field preview 景深预测
Detection 检测
Diaphragm 光阑
Diffuse 柔光
Diffusers 柔光镜
DIN (Deutsche Industrische Normen) 德国工业标准
Diopter 屈光度
Dispersion 色散
Display 显示
Distortion 畸变
Double exposure 双重曝光
Double ring zoom 双环式变焦镜头
Dreams filter 梦幻滤光镜
Drive mode 驱动方式
Duration of flash 闪光持续时间
DX-code DX编码

E

ED(Extra low Dispersion) 超低色散
Electro selective pattern(ESP) 电子选择模式
EOS(Electronic Optical System) 电子光学系统
Ergonomic 人体工程学
EV(Exposure value) 曝光值
Evaluative metering 综合评价测光
Expert 专家、专业
Exposure 曝光
Exposure adjustment 曝光调整
Exposure compensation 曝光补偿
Exposure memory 曝光记忆
Exposure mode 曝光方式
Exposure value(EV) 曝光值
Extension tube 近摄接圈
Extension ring 近摄接圈
External metering 外测光
Extra wide angle lens 超广角镜头
Eye-level fixed 眼平固定
Eye-start 眼启动
Eyepiece 目镜
Eyesight correction lenses 视力校正镜

F

Field curvature 像场弯曲
Fill in 填充(式)
Film 胶卷(片)
Film speed 胶卷感光度
Film transport 输片、过片
Filter 滤光镜
Finder 取景器
First curtain 前帘、第一帘幕
Fish eye lens 鱼眼镜头
Flare 耀斑、眩光
Flash 闪光灯、闪光
Flash range 闪光范围
Flash ready 闪光灯充电完毕
Flexible program 柔性程序
Focal length 焦距
Focal plane 焦点平面
Focus 焦点
Focus area 聚焦区域
Focus hold 焦点锁定
Focus lock 焦点锁定
Focus prediction 焦点预测
Focus priority 焦点优先
Focus screen 聚焦屏
Focus tracking 焦点跟踪
Focusing 聚焦、对焦、调焦
Focusing stages 聚焦级数
Fog filter 雾化滤光镜
Foreground 前景
Frame 张数、帧
Freeze 冻结、凝固
Fresnel lens 菲涅尔透镜、环状透镜
Frontground 前景
Fuzzy logic 模糊逻辑

G

Glare 眩光
GN(Guide Number) 闪光指数
GPD(Gallium Photo Diode) 稼光电二极管
Graduated 渐变

H

Half frame 半幅
Halfway 半程
Hand grip 手柄
High eye point 远视点、高眼点
High key 高调
Highlight 高光、高亮
Highlight control 高光控制
High speed 高速
Honeycomb metering 蜂巢式测光
Horizontal 水平
Hot shoe 热靴、附件插座
Hybrid camera 混合相机
Hyper manual 超手动
Hyper program 超程序
Hyperfocal 超焦距

I

IC(Integrated Circuit) 集成电路
Illumination angle 照明角度
Illuminator 照明器
Image control 影像控制
Image size lock 影像放大倍率锁定
Infinity 无限远、无穷远
Infra-red(IR) 红外线
Instant return 瞬回式
Integrated 集成
Intelligence 智能化
Intelligent power zoom 智能化电动变焦
Interactive function 交互式功能
Interchangeable 可更换
Internal focusing 内调焦
Interval shooting 间隔拍摄
ISO(International Standard Association) 国际标准化组织

J

JIS(Japanese Industrial Standards)
日本工业标准

L

Landscape 风景
Latitude 宽容度
LCD data panel LCD数据面板
LCD(Liquid Crystal Display) 液晶显示
LED(Light Emitting Diode) 发光二极管
Lens 镜头、透镜
Lens cap 镜头盖
Lens hood 镜头遮光罩
Lens release 镜头释放钮
Lithium battery 锂电池
Lock 闭锁、锁定
Low key 低调
Low light 低亮度、低光
LSI(Large Scale Integrated) 大规模集成

M

Macro 微距、巨像
Magnification 放大倍率
Main switch 主开关
Manual 手动
Manual exposure 手动曝光
Manual focusing 手动聚焦
Matrix metering 矩阵式测光
Maximum 最大
Metered manual 测光手动
Metering 测光
Micro prism 微棱
Minimum 最小
Mirage 倒影镜
Mirror 反光镜
Mirror box 反光镜箱
Mirror lens 折反射镜头
Module 模块
Monitor 监视、监视器
Monopod 独脚架
Motor 电动机、马达
Mount 卡口
MTF (Modulation Transfer Function 调制传递函数
Multi beam 多束
Multi control 多重控制
Multi-dimensional 多维
Multi-exposure 多重曝光
Multi-image 多重影
Multi-mode 多模式
Multi-pattern 多区、多分区、多模式
Multi-program 多程序
Multi sensor 多传感器、多感光元件
Multi spot metering 多点测光
Multi task 多任务

N

Negative 负片
Neutral 中性
Neutral density filter 中灰密度滤光镜
Ni-Cd battery 镍铬(可充电)电池

O

Off camera 离机
Off center 偏离中心
OTF(Off The Film) 偏离胶卷平面
One ring zoom 单环式变焦镜头
One touch 单环式
Orange filter 橙色滤光镜
Over exposure 曝光过度

P

Panning 摇拍
Panorama 全景
Parallel 平行
Parallax 平行视差
Partial metering 局部测光
Passive 被动的、无源的
Pastels filter 水粉滤光镜
PC(Perspective Control) 透视控制
Pentaprism 五棱镜
Perspective 透视的
Phase detection 相位检测
Photography 摄影
Pincushion distortion 枕形畸变
Plane of focus 焦点平面
Point of view 视点
Polarizing 偏振、偏光
Polarizer 偏振镜
Portrait 人像、肖像
Power 电源、功率、电动
Power focus 电动聚焦
Power zoom 电动变焦
Predictive 预测
Predictive focus control 预测焦点控制
Preflash 预闪
Professional 专业的
Program 程序
Program back 程序机背
Program flash 程序闪光
Program reset 程序复位
Program shift 程序偏移
Programmed Image Control (PIC) 程序化影像控制

Q

Quartz data back 石英数据机背

R

Rainbows filter 彩虹滤光镜
Range finder 测距取景器
Release priority 释放优先
Rear curtain 后帘
Reciprocity failure 倒易律失效
Reciprocity Law 倒易律
Recompose 重新构图
Red eye 红眼
Red eye reduction 红眼减少
Reflector 反射器、反光板
Reflex 反光
Remote control terminal 快门线插孔
Remote cord 遥控线、快门线
Resolution 分辨率
Reversal films 反转胶片
Rewind 退卷
Ring flash 环形闪光灯
ROM(Read Only Memory) 只读存储器
Rotating zoom 旋转式变焦镜头
RTF(Retractable TTL Flash) 可收缩TTL闪光灯

S

Second curtain 后帘、第二帘幕
Secondary Imaged Registration(SIR) 辅助影像重合
Segment 段、区
Selection 选择
Self-timer 自拍机
Sensitivity 灵敏度
Sensitivity range 灵敏度范围
Sensor 传感器
Separator lens 分离镜片
Sepia filter 褐色滤光镜
Sequence zoom shooting 顺序变焦拍摄
Sequential shoot 顺序拍摄
Servo autofocus 伺服自动聚焦
Setting 设置
Shadow 阴影、暗位
Shadow control 阴影控制
Sharpness 清晰度
Shift 偏移、移动
Shutter 快门
Shutter curtain 快门帘幕
Shutter priority 快门优先
Shutter release 快门释放
Shutter speed 快门速度
Shutter speed priority 快门速度优先
Silhouette 剪影
Single frame advance 单张进片
Single shot autofocus 单次自动聚焦
Skylight filter 天光滤光镜
Slide film 幻灯胶片
Slow speed synchronization 慢速同步
SLD(Super Lower Dispersion) 超低色散
SLR(Single Lens Reflex) 单镜头反光照相机
SMC(Super Multi Coated) 超级多层镀膜
Soft focus 柔焦、柔光
SP(Super Performance) 超级性能
SPC(Silicon Photo Cell) 硅光电池
SPD(Silicon Photo Dioxide) 硅光电二极管
Speedlight 闪光灯、闪光管
Split image 裂像
Sport 体育、运动
Spot metering 点测光
Standard 标准
Standard lens 标准镜头
Starburst 星光镜
Stop 档
Synchronization 同步

T

Tele converter 增距镜、望远变换器
Telephoto lens 长焦距镜头
Trailing-shutter curtain 后帘同步
Trap focus 陷阱聚焦
Tripod 三脚架
TS(Tilt and Shift) 倾斜及偏移
TTL flash TTL闪光
TTL flash metering TTL闪光测光
TTL(Through The Lens) 通过镜头、镜后
Two touch 双环

U

UD(Ultra-low Dispersion) 超低色散
Ultra wide 超阔、超广
Ultrasonic 超声波
UV(Ultra-Violet) 紫外线
Under exposure 曝光不足

V

Vari-colour 变色
Var-program 变程序
Variable speed 变速
Vertical 垂直
Vertical traverse 纵走式
View finder 取景器

W

Warm tone 暖色调
Wide angle lens 广角镜头
Wide view 广角预视、宽区预视
Wildlife 野生动物
Wireless remote 无线遥控
World time 世界时间

X

X-sync X-同步

Z

Zoom 变焦
Zoom lens 变焦镜头
Zoom clip 变焦剪裁
Zoom effect 变焦效果

Other

TTL 镜后测光
NTTL 非镜后测光
UM 无机内测光,手动 测光
MM 机内测光,但需手动设定
AP 光圈优先
SP 快门优先
PR 程序暴光
ANCILLARY DEVICES 辅助产品
BACKPLANES 底板
CABLES AND CONNECTORS 连线及连接器
ENCLOSURES 围圈
FACTORY AUTOMATION 工厂自动化
POWER SUPPLIES 电源
APPLICATION-SPECIFIC SOFTWARE 应用软件
INDUSTRIAL-INSPECTION SOFTWARE 工业检测软件
MEDICAL-IMAGING SOFTWARE 医药图象软件
SCIENTIFIC-ANALYSIS SOFTWARE 科学分析软件
SEMICONDUCTOR-INSPECTION SOFTWARE 半导体检测软件
CAMERAS 相机
AREA-ARRAY CAMERAS 面阵相机
CAMERA LINK CAMERAS CAMERA-LINK相机
CCD CAMERAS-COLOR ccd彩色相机
CCD CAMERAS COOLED ccoled型ccd相机
CHARGE-INJECTION-DEVICE CAMERAS 充电相机
CMOS CAMERAS cmos相机
DIGITAL-OUTPUT CAMERAS 数码相机
FIREWIRE(1394) CAMERAS 1394接口相机
HIGH-SPEED VIDEO CAMERAS 高速摄象机
INFRARED CAMERAS 红外相机
LINESCAN CAMERAS 行扫描相机
LOW-LIGHT-LEVEL CAMERAS 暗光相机
MULTISPECTRAL CAMERAS 多光谱相机
SMART CAMERAS 微型相机
TIME-DELAY-AND-INTEGRATION CAMERAS 时间延迟集成相机
USB CAMERAS usb接口相机
VIDEO CAMERAS 摄象机
DIGITIZERS 数字转换器
MEASUREMENT DIGITIZERS 数字测量器
MOTION-CAPTURE DIGITIZERS 数字运动捕捉器
DISPLAYS 显示器
CATHODE-RAY TUBES(CRTs) 阴极摄像管
INDUSTRIAL DISPLAYS 工业用型显示器
LIQUID-CRYSTAL DISPLAYS 液晶显示器
ILLUMINATION SYSTEMS 光源系统
BACKLIGHTING DEVICES 背光源
FIBEROPTIC ILLUMINATION SYSTEMS 光纤照明系统
FLUORESCENT ILLUMINATION SYSTEMS荧光照明系统
INFRARED LIGHTING 红外照明
LED LIGHTING led照明
STRUCTURED LIGHTING 结构化照明
ULTRAVIOLET ILLUMINATION SYSTEMS 紫外照明系统
WHITE-LIGHT ILLUMINATION SYSTEMS 白光照明系统
XENON ILLUMINATION SYSTEMS 氙气照明系统
IMAGE-PROCESSING SYSTEMS 图象处理系统
AUTOMATION/ROBOTICS 自动化/机器人技术
DIGITAL IMAGING SYSTEMS 数字图象系统
DOCUMENT-IMAGING SYSTEMS 数据图象系统
GUIDANCE/TRACKING SYSTEMS 制导/跟踪系统
INFRARED IMAGING SYSTEMS 红外图象系统
INSPECTION/NONDESTRUCTIVE TESTING SYSTEMS 检测/非破坏性 测试系统
INSTRUMENTATION SYSTEMS 测试设备系统
INTELLIGENT TRANSPORTATION SYSTEMS 智能交通系统
MEDICAL DIAGNOSTICS SYSTEMS 医疗诊断系统
METROLOGY/MEASUREMENT/GAUGING SYSTEMS 测绘系统
MICROSCOPY SYSTEMS 微观系统
MOTION-ANALYSIS SYSTEMS 运动分析系统
OPTICAL-CHARACTER-RECOGNITION/OPTICAL-CHARACTER-VERIFICATION SYSTEMS 光学文字识别系统
PROCESS-CONTROL SYSTEMS 处理控制系统
QUALITY-ASSURANCE SYSTEMS 高保真系统
REMOTE SENSING SYSTEMS 遥感系统
WEB-SCANNING SYSTEMS 网状扫描系统
IMAGE-PROCESSING TOOLKITS 图象处理工具包
COMPILERS 编译器
DATA-ACQUISITION TOOLKITS 数据采集工具套件
DEVELOPMENT TOOLS 开发工具
DIGITAL-SIGNAL-PROCESSOR(DSP) DEVELOPMENT TOOLKITS 数字信号处理开发工具套件
REAL-TIME OPERATING SYSTEMS(RTOSs) 实时操作系统
WINDOWS 窗口
IMAGE SOURCES 图象资源
FLASHLAMPS 闪光灯
FLUORESCENT SOURCES 荧光源
LASERS 激光器
LIGHT-EMITTING DIODES(LEDs) 发光二极管
STROBE ILLUMINATION 闪光照明
TUNGSTEN LAMPS 钨灯
ULTRAVIOLET LAMPS 紫外灯
WHITE-LIGHT SOURCES 白光灯
XENON LAMPS 氙气灯
X-RAY SOURCES x射线源
IMAGE-STORAGE DEVICES 图象存储器
HARD DRIVES 硬盘设备
OPTICAL STORAGE DEVICES 光存储设备
RAID STORAGE DEVICES RAID存储设备( 廉价磁盘冗余阵列设备)
INTEGRATED CIRCUITS 综合电路
ASICS 专用集成电路
ANALOG-TO-DIGITAL CONVERTERS 模数转换器
COMMUNICATIONS CONTROLLERS 通信控制器
DIGITAL-SIGNAL PROCESSORS 数字信号处理器
DIGITAL-TO-ANALOG CONVERTERS 数模转换器
DISPLAY CONROLLERS 显示器控制器
FIELD-PROGRAMMABLE GATE 现场可编程门阵列
ARRAYS 阵列
GRAPHICS-DISPLAY CONTROLLERS 图形显示控制器
IMAGE-PROCESSING ICs 图象处理芯片
MIXED-SIGNAL ICs 混合信号芯片
VIDEO-PROCESSING ICs 视频处理芯片
LENSES 镜头
CAMERA LENSES 相机镜头
ENLARGING LENSES 放大镜
HIGH-RESOLUTION LENSES 高分辨率镜头
IMAGE-SCANNING LENSES 图象扫描镜头
PROJECTION LENSES 聚光透镜
TELECENTRIC LENSES 望远镜
VIDEO LENSES 摄象机镜头
MONITORS 显示器
CATHODE-RAY-TUBE(CRT) MONITORS, COLOR crt彩色监视器
CATHODE-RAY-TUBE(CRT) MONITORS, MONOCHROME 单色crt监视器
LIQUID-CRYSTAL-DISPLAY(LED) MONITORS lcd监视器

转载于:https://www.cnblogs.com/QiLF/p/10900362.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
CONTENTS I IMAGEFORMATION 1 1 RADIOMETRY — MEASURING LIGHT 3 1.1 Light in Space 3 1.1.1 Foreshortening 3 1.1.2 Solid Angle 4 1.1.3 Radiance 6 1.2 Light at Surfaces 8 1.2.1 Simplifying Assumptions 9 1.2.2 The Bidirectional Reflectance Distribution Function 9 1.3 Important Special Cases 11 1.3.1 Radiosity 11 1.3.2 Directional Hemispheric Reflectance 12 1.3.3 Lambertian Surfaces and Albedo 12 1.3.4 Specular Surfaces 13 1.3.5 The Lambertian + Specular Model 14 1.4 Quick Reference: Radiometric Terminology for Light 16 1.5 Quick Reference: Radiometric Properties of Surfaces 17 1.6 Quick Reference: Important Types of Surface 18 1.7 Notes 19 1.8 Assignments 19 2 SOURCES, SHADOWS AND SHADING 21 2.1 Radiometric Properties of Light Sources 21 2.2 Qualitative Radiometry 22 2.3 Sources and their Effects 23 2.3.1 Point Sources 24 v vi 2.3.2 Line Sources 26 2.3.3 Area Sources 27 2.4 Local Shading Models 28 2.4.1 Local Shading Models for Point Sources 28 2.4.2 Area Sources and their Shadows 31 2.4.3 Ambient Illumination 31 2.5 Application: Photometric Stereo 33 2.5.1 Normal and Albedo from Many Views 36 2.5.2 Shape from Normals 37 2.6 Interreflections: Global Shading Models 40 2.6.1 An Interreflection Model 42 2.6.2 Solving for Radiosity 43 2.6.3 The qualitative effects of interreflections 45 2.7 Notes 47 2.8 Assignments 50 2.8.1 Exercises 50 2.8.2 Programming Assignments 51 3 COLOUR 53 3.1 The Physics of Colour 53 3.1.1 Radiometry for Coloured Lights: Spectral Quantities 53 3.1.2 The Colour of Surfaces 54 3.1.3 The Colour of Sources 55 3.2 Human Colour Perception 58 3.2.1 Colour Matching 58 3.2.2 Colour Receptors 61 3.3 Representing Colour 63 3.3.1 Linear Colour Spaces 63 3.3.2 Non-linear Colour Spaces 68 3.3.3 Spatial and Temporal Effects 73 3.4 Application: Finding Specularities 73 3.5 Surface Colour from Image Colour 77 3.5.1 Surface Colour Perception in People 77 3.5.2 Inferring Lightness 80 3.5.3 A Model for Image Colour 83 3.5.4 Surface Colour from Finite Dimensional Linear Models 86 3.6 Notes 89 vii 3.6.1 Trichromacy and Colour Spaces 89 3.6.2 Lightness and Colour Constancy 90 3.6.3 Colour in Recognition 91 3.7 Assignments 91 II IMAGE MODELS 94 4 GEOMETRIC IMAGE FEATURES 96 4.1 Elements of Differential Geometry 100 4.1.1 Curves 100 4.1.2 Surfaces 105 Application: The shape of specularities 109 4.2 Contour Geometry 112 4.2.1 The Occluding Contour and the Image Contour 113 4.2.2 The Cusps and Inflections of the Image Contour 114 4.2.3 Koenderink’s Theorem 115 4.3 Notes 117 4.4 Assignments 118 5 ANALYTICAL IMAGE FEATURES 120 5.1 Elements of Analytical Euclidean Geometry 120 5.1.1 Coordinate Systems and Homogeneous Coordinates 121 5.1.2 Coordinate System Changes and Rigid Transformations 124 5.2 Geometric Camera Parameters 129 5.2.1 Intrinsic Parameters 129 5.2.2 Extrinsic Parameters 132 5.2.3 A Characterization of Perspective Projection Matrices 132 5.3 Calibration Methods 133 5.3.1 A Linear Approach to Camera Calibration 134 Technique: Linear Least Squares Methods 135 5.3.2 Taking Radial Distortion into Account 139 5.3.3 Using Straight Lines for Calibration 140 5.3.4 Analytical Photogrammetry 143 Technique: Non-Linear Least Squares Methods 145 5.4 Notes 147 5.5 Assignments 147 viii 6 AN INTRODUCTION TO PROBABILITY 150 6.1 Probability in Discrete Spaces 151 6.1.1 Probability: the P-function 151 6.1.2 Conditional Probability 153 6.1.3 Choosing P 153 6.2 Probability in Continuous Spaces 159 6.2.1 Event Structures for Continuous Spaces 159 6.2.2 Representing a P-function for the Real Line 160 6.2.3 Probability Densities 161 6.3 Random Variables 161 6.3.1 Conditional Probability and Independence 162 6.3.2 Expectations 163 6.3.3 Joint Distributions and Marginalization 165 6.4 Standard Distributions and Densities 165 6.4.1 The Normal Distribution 167 6.5 Probabilistic Inference 167 6.5.1 The Maximum Likelihood Principle 168 6.5.2 Priors, Posteriors and Bayes’ rule 170 6.5.3 Bayesian Inference 170 6.5.4 Open Issues 177 6.6 Discussion 178 III EARLY VISION: ONE IMAGE 180 7 LINEAR FILTERS 182 7.1 Linear Filters and Convolution 182 7.1.1 Convolution 182 7.1.2 Example: Smoothing by Averaging 183 7.1.3 Example: Smoothing with a Gaussian 185 7.2 Shift invariant linear systems 186 7.2.1 Discrete Convolution 188 7.2.2 Continuous Convolution 190 7.2.3 Edge Effects in Discrete Convolutions 192 7.3 Spatial Frequency and Fourier Transforms 193 7.3.1 Fourier Transforms 193 7.4 Sampling and Aliasing 197 7.4.1 Sampling 198 ix 7.4.2 Aliasing 201 7.4.3 Smoothing and Resampling 202 7.5 Technique: Scale and Image Pyramids 204 7.5.1 The Gaussian Pyramid 205 7.5.2 Applications of Scaled Representations 206 7.5.3 Scale Space 208 7.6 Discussion 211 7.6.1 Real Imaging Systems vs Shift-Invariant Linear Systems 211 7.6.2 Scale 212 8 EDGE DETECTION 214 8.1 Estimating Derivatives with Finite Differences 214 8.1.1 Differentiation and Noise 216 8.1.2 Laplacians and edges 217 8.2 Noise 217 8.2.1 Additive Stationary Gaussian Noise 219 8.3 Edges and Gradient-based Edge Detectors 224 8.3.1 Estimating Gradients 224 8.3.2 Choosing a Smoothing Filter 225 8.3.3 Why Smooth with a Gaussian? 227 8.3.4 Derivative of Gaussian Filters 229 8.3.5 Identifying Edge Points from Filter Outputs 230 8.4 Commentary 234 9 FILTERS AND FEATURES 237 9.1 Filters as Templates 237 9.1.1 Convolution as a Dot Product 237 9.1.2 Changing Basis 238 9.2 Human Vision: Filters and Primate Early Vision 239 9.2.1 The Visual Pathway 239 9.2.2 How the Visual Pathway is Studied 241 9.2.3 The Response of Retinal Cells 241 9.2.4 The Lateral Geniculate Nucleus 242 9.2.5 The Visual Cortex 243 9.2.6 A Model of Early Spatial Vision 246 9.3 Technique: Normalised Correlation and Finding Patterns 248 9.3.1 Controlling the Television by Finding Hands by Normalised Correlation 248 x 9.4 Corners and Orientation Representations 249 9.5 Advanced Smoothing Strategies and Non-linear Filters 252 9.5.1 More Noise Models 252 9.5.2 Robust Estimates 253 9.5.3 Median Filters 254 9.5.4 Mathematical morphology: erosion and dilation 257 9.5.5 Anisotropic Scaling 258 9.6 Commentary 259 10 TEXTURE 261 10.1 Representing Texture 263 10.1.1 Extracting Image Structure with Filter Banks 263 10.2 Analysis (and Synthesis) Using Oriented Pyramids 268 10.2.1 The Laplacian Pyramid 269 10.2.2 Oriented Pyramids 272 10.3 Application: Synthesizing Textures for Rendering 272 10.3.1 Homogeneity 274 10.3.2 Synthesis by Matching Histograms of Filter Responses 275 10.3.3 Synthesis by Sampling Conditional Densities of Filter Responses280 10.3.4 Synthesis by Sampling Local Models 284 10.4 Shape from Texture: Planes and Isotropy 286 10.4.1 Recovering the Orientation of a Plane from an Isotropic Texture288 10.4.2 Recovering the Orientation of a Plane from an Homogeneity Assumption 290 10.4.3 Shape from Texture for Curved Surfaces 291 10.5 Notes 292 10.5.1 Shape from Texture 293 IV EARLY VISION: MULTIPLE IMAGES 295 11 THE GEOMETRY OF MULTIPLE VIEWS 297 11.1 Two Views 298 11.1.1 Epipolar Geometry 298 11.1.2 The Calibrated Case 299 11.1.3 Small Motions 300 11.1.4 The Uncalibrated Case 301 11.1.5 Weak Calibration 302 xi 11.2 Three Views 305 11.2.1 Trifocal Geometry 307 11.2.2 The Calibrated Case 307 11.2.3 The Uncalibrated Case 309 11.2.4 Estimation of the Trifocal Tensor 310 11.3 More Views 311 11.4 Notes 317 11.5 Assignments 319 12 STEREOPSIS 321 12.1 Reconstruction 323 12.1.1 Camera Calibration 324 12.1.2 Image Rectification 325 Human Vision: Stereopsis 327 12.2 Binocular Fusion 331 12.2.1 Correlation 331 12.2.2 Multi-Scale Edge Matching 333 12.2.3 Dynamic Programming 336 12.3 Using More Cameras 338 12.3.1 Trinocular Stereo 338 12.3.2 Multiple-Baseline Stereo 340 12.4 Notes 341 12.5 Assignments 343 13 AFFINE STRUCTURE FROM MOTION 345 13.1 Elements of Affine Geometry 346 13.2 Affine Structure from Two Images 349 13.2.1 The Affine Structure-from-Motion Theorem 350 13.2.2 Rigidity and Metric Constraints 351 13.3 Affine Structure from Multiple Images 351 13.3.1 The Affine Structure of Affine Image Sequences 352 Technique: Singular Value Decomposition 353 13.3.2 A Factorization Approach to Affine Motion Analysis 353 13.4 From Affine to Euclidean Images 356 13.4.1 Euclidean Projection Models 357 13.4.2 From Affine to Euclidean Motion 358 13.5 Affine Motion Segmentation 360 13.5.1 The Reduced Echelon Form of the Data Matrix 360 xii 13.5.2 The Shape Interaction Matrix 360 13.6 Notes 362 13.7 Assignments 363 14 PROJECTIVE STRUCTURE FROM MOTION 365 14.1 Elements of Projective Geometry 366 14.1.1 Projective Bases and Projective Coordinates 366 14.1.2 Projective Transformations 368 14.1.3 Affine and Projective Spaces 370 14.1.4 Hyperplanes and Duality 371 14.1.5 Cross-Ratios 372 14.1.6 Application: Parameterizing the Fundamental Matrix 375 14.2 Projective Scene Reconstruction from Two Views 376 14.2.1 Analytical Scene Reconstruction 376 14.2.2 Geometric Scene Reconstruction 378 14.3 Motion Estimation from Two or Three Views 379 14.3.1 Motion Estimation from Fundamental Matrices 379 14.3.2 Motion Estimation from Trifocal Tensors 381 14.4 Motion Estimation from Multiple Views 382 14.4.1 A Factorization Approach to Projective Motion Analysis 383 14.4.2 Bundle Adjustment 386 14.5 From Projective to Euclidean Structure and Motion 386 14.5.1 Metric Upgrades from (Partial) Camera Calibration 387 14.5.2 Metric Upgrades from Minimal Assumptions 389 14.6 Notes 392 14.7 Assignments 394 V MID-LEVEL VISION 399 15 SEGMENTATION USING CLUSTERING METHODS 401 15.1 Human vision: Grouping and Gestalt 403 15.2 Applications: Shot Boundary Detection, Background Subtraction and Skin Finding 407 15.2.1 Background Subtraction 407 15.2.2 Shot Boundary Detection 408 15.2.3 Finding Skin Using Image Colour 410 15.3 Image Segmentation by Clustering Pixels 411 xiii 15.3.1 Simple Clustering Methods 411 15.3.2 Segmentation Using Simple Clustering Methods 413 15.3.3 Clustering and Segmentation by K-means 415 15.4 Segmentation by Graph-Theoretic Clustering 417 15.4.1 Basic Graphs 418 15.4.2 The Overall Approach 420 15.4.3 Affinity Measures 420 15.4.4 Eigenvectors and Segmentation 424 15.4.5 Normalised Cuts 427 15.5 Discussion 430 16 FITTING 436 16.1 The Hough Transform 437 16.1.1 Fitting Lines with the Hough Transform 437 16.1.2 Practical Problems with the Hough Transform 438 16.2 Fitting Lines 440 16.2.1 Least Squares, Maximum Likelihood and Parameter Estimation441 16.2.2 Which Point is on Which Line? 444 16.3 Fitting Curves 445 16.3.1 Implicit Curves 446 16.3.2 Parametric Curves 449 16.4 Fitting to the Outlines of Surfaces 450 16.4.1 Some Relations Between Surfaces and Outlines 451 16.4.2 Clustering to Form Symmetries 453 16.5 Discussion 457 17 SEGMENTATION AND FITTING USING PROBABILISTICMETHODS 460 17.1 Missing Data Problems, Fitting and Segmentation 461 17.1.1 Missing Data Problems 461 17.1.2 The EM Algorithm 463 17.1.3 Colour and Texture Segmentation with EM 469 17.1.4 Motion Segmentation and EM 470 17.1.5 The Number of Components 474 17.1.6 How Many Lines are There? 474 17.2 Robustness 475 17.2.1 Explicit Outliers 475 17.2.2 M-estimators 477 xiv 17.2.3 RANSAC 480 17.3 How Many are There? 483 17.3.1 Basic Ideas 484 17.3.2 AIC — An Information Criterion 484 17.3.3 Bayesian methods and Schwartz’ BIC 485 17.3.4 Description Length 486 17.3.5 Other Methods for Estimating Deviance 486 17.4 Discussion 487 18 TRACKING 489 18.1 Tracking as an Abstract Inference Problem 490 18.1.1 Independence Assumptions 490 18.1.2 Tracking as Inference 491 18.1.3 Overview 492 18.2 Linear Dynamic Models and the Kalman Filter 492 18.2.1 Linear Dynamic Models 492 18.2.2 Kalman Filtering 497 18.2.3 The Kalman Filter for a 1D State Vector 497 18.2.4 The Kalman Update Equations for a General State Vector 499 18.2.5 Forward-Backward Smoothing 500 18.3 Non-Linear Dynamic Models 505 18.3.1 Unpleasant Properties of Non-Linear Dynamics 508 18.3.2 Difficulties with Likelihoods 509 18.4 Particle Filtering 511 18.4.1 Sampled Representations of Probability Distributions 511 18.4.2 The Simplest Particle Filter 515 18.4.3 A Workable Particle Filter 518 18.4.4 If’s, And’s and But’s — Practical Issues in Building Particle Filters 519 18.5 Data Association 523 18.5.1 Choosing the Nearest — Global Nearest Neighbours 523 18.5.2 Gating and Probabilistic Data Association 524 18.6 Applications and Examples 527 18.6.1 Vehicle Tracking 528 18.6.2 Finding and Tracking People 532 18.7 Discussion 538 II Appendix: The Extended Kalman Filter, or EKF 540 xv VI HIGH-LEVEL VISION 542 19 CORRESPONDENCE AND POSE CONSISTENCY 544 19.1 Initial Assumptions 544 19.1.1 Obtaining Hypotheses 545 19.2 Obtaining Hypotheses by Pose Consistency 546 19.2.1 Pose Consistency for Perspective Cameras 547 19.2.2 Affine and Projective Camera Models 549 19.2.3 Linear Combinations of Models 551 19.3 Obtaining Hypotheses by Pose Clustering 553 19.4 Obtaining Hypotheses Using Invariants 554 19.4.1 Invariants for Plane Figures 554 19.4.2 Geometric Hashing 559 19.4.3 Invariants and Indexing 560 19.5 Verification 564 19.5.1 Edge Proximity 565 19.5.2 Similarity in Texture, Pattern and Intensity 567 19.5.3 Example: Bayes Factors and Verification 567 19.6 Application: Registration in Medical Imaging Systems 568 19.6.1 Imaging Modes 569 19.6.2 Applications of Registration 570 19.6.3 Geometric Hashing Techniques in Medical Imaging 571 19.7 Curved Surfaces and Alignment 573 19.8 Discussion 576 20 FINDING TEMPLATES USING CLASSIFIERS 581 20.1 Classifiers 582 20.1.1 Using Loss to Determine Decisions 582 20.1.2 Overview: Methods for Building Classifiers 584 20.1.3 Example: A Plug-in Classifier for Normal Class-conditional Densities 586 20.1.4 Example: A Non-Parametric Classifier using Nearest Neighbours 587 20.1.5 Estimating and Improving Performance 588 20.2 Building Classifiers from Class Histograms 590 20.2.1 Finding Skin Pixels using a Classifier 591 20.2.2 Face Finding Assuming Independent Template Responses 592 20.3 Feature Selection 595 xvi 20.3.1 Principal Component Analysis 595 20.3.2 Canonical Variates 597 20.4 Neural Networks 601 20.4.1 Key Ideas 601 20.4.2 Minimizing the Error 606 20.4.3 When to Stop Training 610 20.4.4 Finding Faces using Neural Networks 610 20.4.5 Convolutional Neural Nets 612 20.5 The Support Vector Machine 615 20.5.1 Support Vector Machines for Linearly Separable Datasets 616 20.5.2 Finding Pedestrians using Support Vector Machines 618 20.6 Conclusions 622 II Appendix: Support Vector Machines for Datasets that are not Linearly Separable 624 III Appendix: Using Support Vector Machines with Non-Linear Kernels 625 21 RECOGNITION BY RELATIONS BETWEEN TEMPLATES 627 21.1 Finding Objects by Voting on Relations between Templates 628 21.1.1 Describing Image Patches 628 21.1.2 Voting and a Simple Generative Model 629 21.1.3 Probabilistic Models for Voting 630 21.1.4 Voting on Relations 632 21.1.5 Voting and 3D Objects 632 21.2 Relational Reasoning using Probabilistic Models and Search 633 21.2.1 Correspondence and Search 633 21.2.2 Example: Finding Faces 636 21.3 Using Classifiers to Prune Search 639 21.3.1 Identifying Acceptable Assemblies Using Projected Classifiers 640 21.3.2 Example: Finding People and Horses Using Spatial Relations 640 21.4 Technique: Hidden Markov Models 643 21.4.1 Formal Matters 644 21.4.2 Computing with Hidden Markov Models 645 21.4.3 Varieties of HMM’s 652 21.5 Application: HiddenMarkovModels and Sign Language Understanding654 21.6 Application: Finding People with Hidden Markov Models 659 21.7 Frames and Probability Models 662 21.7.1 Representing Coordinate Frames Explicitly in a Probability Model 664 xvii 21.7.2 Using a Probability Model to Predict Feature Positions 666 21.7.3 Building Probability Models that are Frame-Invariant 668 21.7.4 Example: Finding Faces Using Frame Invariance 669 21.8 Conclusions 669 22 ASPECT GRAPHS 672 22.1 Differential Geometry and Visual Events 677 22.1.1 The Geometry of the Gauss Map 677 22.1.2 Asymptotic Curves 679 22.1.3 The Asymptotic Spherical Map 681 22.1.4 Local Visual Events 682 22.1.5 The Bitangent Ray Manifold 684 22.1.6 Multilocal Visual Events 686 22.1.7 Remarks 687 22.2 Computing the Aspect Graph 689 22.2.1 Step 1: Tracing Visual Events 690 22.2.2 Step 2: Constructing the Regions 691 22.2.3 Remaining Steps of the Algorithm 692 22.2.4 An Example 692 22.3 Aspect Graphs and Object Recognition 696 22.4 Notes 696 22.5 Assignments 697 VII APPLICATIONS AND TOPICS 699 23 RANGE DATA 701 23.1 Active Range Sensors 701 23.2 Range Data Segmentation 704 Technique: Analytical Differential Geometry 705 23.2.1 Finding Step and Roof Edges in Range Images 707 23.2.2 Segmenting Range Images into Planar Regions 712 23.3 Range Image Registration and Model Construction 714 Technique: Quaternions 715 23.3.1 Registering Range Images Using the Iterative Closest-Point Method 716 23.3.2 Fusing Multiple Range Images 719 23.4 Object Recognition 720 xviii 23.4.1 Matching Piecewise-Planar Surfaces Using Interpretation Trees721 23.4.2 Matching Free-Form Surfaces Using Spin Images 724 23.5 Notes 729 23.6 Assignments 730 24 APPLICATION: FINDING IN DIGITAL LIBRARIES 732 24.1 Background 733 24.1.1 What do users want? 733 24.1.2 What can tools do? 735 24.2 Appearance 736 24.2.1 Histograms and correlograms 737 24.2.2 Textures and textures of textures 738 24.3 Finding 745 24.3.1 Annotation and segmentation 748 24.3.2 Template matching 749 24.3.3 Shape and correspondence 751 24.4 Video 754 24.5 Discussion 756 25 APPLICATION: IMAGE-BASED RENDERING 758 25.1 Constructing 3D Models from Image Sequences 759 25.1.1 Scene Modeling from Registered Images 759 25.1.2 Scene Modeling from Unregistered Images 767 25.2 Transfer-Based Approaches to Image-Based Rendering 771 25.2.1 Affine View Synthesis 772 25.2.2 Euclidean View Synthesis 775 25.3 The Light Field 778 25.4 Notes 782 25.5 Assignments 784
计算机网络名词的对照如下: - 广域网(WAN):Wide Area Network - 城域网(MAN):Metropolitan Area Network - 局域网(LAN):Local Area Network - 个人区域网(PAN):Personal Area Network - 接入网(AN):Access Network - 电话网络(PSTN):Public Switched Telephone Network - 计算机网络:Computer Network - 视频网络(CATV):Cable Television Network - 公用网:Public Network - 专用网:Private Network - 往返时延(RTT):Round-Trip Time - 带宽(Bandwidth) - 时延(Delay) - 因特网(Internet) - 因特网服务提供商(ISP):Internet Service Provider - 应用层(Application Layer) - 传输层(Transport Layer) - 网络层(Network Layer) - 数据链路层(Data Link Layer) - 物理层(Physical Layer) - C/S模式(Client/Server模式) - P2P(peer to peer)对等模式 - 进程(Process) - 域名系统(DNS):Domain Name System - 统一资源定位符(URL):Uniform Resource Locator - 万维网(WWW) - 超文本传输协议(HTTP):HyperText Transfer Protocol<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [计算机网络:中英文对照名词解释一览表(持续更新)](https://blog.csdn.net/ZripenYe/article/details/116884490)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [复习计算机网络——常见名词中英文记忆](https://blog.csdn.net/m0_51273315/article/details/128096016)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值