Page dewarping (OCR之图像去扭曲)

本文关注OCR预处理中的图像去扭曲问题,包括透视和畸变校正。传统方法基于文本行进行校正,但在复杂版式或少量文本时效果不佳。现代方法利用深度学习改进了这一过程,如DocUnet,旨在提升OCR准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在OCR中,存在着两个预处理难题【1】图像角度预判 【2】图像去除扭曲,去除扭曲主要包含两个方面:透视,畸变
由于paper对这方面的论述几乎找不到,尤其是ICCV,NIP,CVPR、ECCV等鲜有新论文
本文主要记录一下各种传统算法以及深度学习算法在图像扭曲上的尝试,持续更新

1. 传统办法简介

  • 传统算法一般基于文本来做dewarping,但是很多时候存在问题:文本行较少,版式(layout)比较复杂。
  • 场景一般是:相片,表格文档,以及图表之类,基于问本行的做法就很费劲。
  • 因此,现在可以充分利用表格线以及文本行同时来做纠正。
  • dewarping 重点是删除透视变换,以及纸张页面卷曲失真来提高OCR的精度
  • Document Image Dewarping using Robust Estimation of Curled Text Lines 文章的假设是文本行的行间距是固定的,而且页面不存在深度方向的变换(例如页面存在褶皱),即文档表面是光滑的

Ref:

【1】Document Image Dewarping using Robust Estimation of Curled Text Lines

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值