电影推荐常用数据集Movielens, TMDB 5000 Movie, Netflix Prize, Large Movie Review Dataset下载地址

本文汇总了多个电影数据集资源,包括Movielens、TMDB5000MovieDataset、NetflixPrize等,涵盖电影评论、用户评分及元数据,适用于推荐系统、情感分析等领域研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Movielens:

教程多,易于上手

更新于2019.12

下载:https://grouplens.org/datasets/movielens/

 

TMDB 5000 Movie Dataset:

       教程也比较多,较易上手

       更新于2017-09-28

下载:https://www.kaggle.com/tmdb/tmdb-movie-metadata

 

Netflix Prize:

       教程较少

收集的评论于1999.12.31-2005.12.31

下载:http://dataju.cn/Dataju/web/datasetInstanceDetail/32  (登录就能下)

 

LDOS-CoMoDa 和 AdomMovie:

       这两个数据集比较小,用户数量<100,电影数量<1000

       相关的教程较少,但是有许多论文

       下载:未知

 

Large Movie Review Dataset:

       包含电影评论及其关联的二进制情绪极性标签

更新于2011(应该是)

下载:http://ai.stanford.edu/~amaas/data/sentiment/  (version 1.0)

           http://dataju.cn/Dataju/web/datasetInstanceDetail/98

 

豆瓣电影数据:

       语言为中文,爬取的有评论,可能要进行中文NLP

       更新于2017(也有网友自己爬的,最新到2019.3,以下链接为2017更新的)

       下载:https://www.kaggle.com/utmhikari/doubanmovieshortcomments/metadata

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值