电影推荐常用数据集Movielens, TMDB 5000 Movie, Netflix Prize, Large Movie Review Dataset下载地址

本文汇总了多个电影数据集资源,包括Movielens、TMDB5000MovieDataset、NetflixPrize等,涵盖电影评论、用户评分及元数据,适用于推荐系统、情感分析等领域研究。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Movielens:

教程多,易于上手

更新于2019.12

下载:https://grouplens.org/datasets/movielens/

 

TMDB 5000 Movie Dataset:

       教程也比较多,较易上手

       更新于2017-09-28

下载:https://www.kaggle.com/tmdb/tmdb-movie-metadata

 

Netflix Prize:

       教程较少

收集的评论于1999.12.31-2005.12.31

下载:http://dataju.cn/Dataju/web/datasetInstanceDetail/32  (登录就能下)

 

LDOS-CoMoDa 和 AdomMovie:

       这两个数据集比较小,用户数量<100,电影数量<1000

       相关的教程较少,但是有许多论文

       下载:未知

 

Large Movie Review Dataset:

       包含电影评论及其关联的二进制情绪极性标签

更新于2011(应该是)

下载:http://ai.stanford.edu/~amaas/data/sentiment/  (version 1.0)

           http://dataju.cn/Dataju/web/datasetInstanceDetail/98

 

豆瓣电影数据:

       语言为中文,爬取的有评论,可能要进行中文NLP

       更新于2017(也有网友自己爬的,最新到2019.3,以下链接为2017更新的)

       下载:https://www.kaggle.com/utmhikari/doubanmovieshortcomments/metadata

 

<think>好的,我现在需要帮助用户找到关于电影数据集的数据挖掘作业相关资料或教程。用户可能是一名学生,正在做数据挖掘相关的作业,需要具体的示例和方法指导。首先,我应该回顾用户提供的引用内容,看看是否有相关的信息。 用户提供的引用中,引用[1]提到了泰坦尼克号数据集的初步探索,这可能涉及数据结构和内容查看的方法,比如使用str()和head()函数。引用[2]涉及数据说明,包括个人基本信息、消费信息等,可能对处理类似结构的数据有帮助。引用[3]则提到毕业设计选题,强调项目工作量和完整性,这可能提示用户需要详细的步骤和完整的方法来确保作业质量。 接下来,我需要考虑电影数据集常见的来源,比如IMDb、MovieLens、Kaggle等平台。这些数据集通常包括电影名称、类型、评分、票房等信息。用户可能需要数据预处理、特征工程、分析方法和建模等方面的指导。 然后,我应该分步骤构建回答。首先推荐数据集来源,然后给出数据预处理的方法,比如处理缺失值、数据转换。接着是特征工程,比如提取年份、分类处理类型。分析部分可以包括统计分析和可视化,比如票房与评分的关系。建模部分可能涉及推荐系统或预测模型,比如使用协同过滤或回归模型。 还需要考虑用户可能需要的问题示例,比如如何处理非数值数据、选择什么算法,以及如何优化模型。这些问题可以帮助用户深入理解数据挖掘的流程。 最后,确保回答符合系统级指令,使用正确的中文和LaTeX格式,引用相关文献,并生成相关问题供用户进一步探索。同时,检查是否有遗漏的步骤或用户可能遇到的常见问题,确保回答全面且实用。</think>### 电影数据集的数据挖掘作业方法与示例 #### 一、数据集获取与理解 1. **常用电影数据集**: - MovieLens数据集(用户评分、电影标签)[^1] - IMDb公开数据集电影元数据、演员信息) - Kaggle电影数据集(如TMDB 5000 Movie Dataset) - Netflix Prize数据集(需申请) 2. **典型字段结构**: ```python # 示例数据结构 movie_data = { "title": "泰坦尼克号", "genre": ["剧情", "爱情"], "release_year": 1997, "rating": 9.4, "box_office": 2.2e9, # 单位:美元 "director": "詹姆斯·卡梅隆" } ``` #### 二、数据预处理方法 1. **缺失值处理**: ```python # 使用pandas处理缺失值 df['rating'].fillna(df['rating'].median(), inplace=True) ``` 2. **非数值数据转换**: - 使用独热编码处理电影类型字段 $$ \text{Genre\_Drama} = \begin{cases} 1 & \text{存在"剧情"标签} \\ 0 & \text{其他} \end{cases} $$ 3. **数据规范化**: $$ x_{\text{norm}} = \frac{x - x_{\min}}{x_{\max} - x_{\min}} $$ #### 三、特征工程示例 1. **时间维度特征**: ```python df['age'] = 2023 - df['release_year'] # 计算电影年龄 ``` 2. **文本特征提取**: - 使用TF-IDF处理电影简介文本 $$ w_{i,j} = \text{tf}_{i,j} \times \log\left(\frac{N}{\text{df}_i}\right) $$ #### 四、分析方法与模型 1. **探索性分析**: ```python # 绘制票房与评分关系 import seaborn as sns sns.scatterplot(x='rating', y='box_office', data=df) ``` 2. **推荐系统建模**: - 协同过滤算法 $$ \text{相似度}(u,v) = \frac{\sum_{i \in I_{uv}}(r_{ui} - \bar{r}_u)(r_{vi} - \bar{r}_v)}{\sqrt{\sum_{i \in I_{uv}}(r_{ui} - \bar{r}_u)^2}\sqrt{\sum_{i \in I_{uv}}(r_{vi} - \bar{r}_v)^2}} $$ 3. **预测模型**: - 使用随机森林预测电影票房 $$ \hat{y} = \frac{1}{B}\sum_{b=1}^B T_b(x) $$ #### 五、作业实现步骤 1. 数据导入与清洗(参考泰坦尼克号数据处理方法[^1]) 2. 构建特征矩阵 3. 建立分析模型(如LDA主题分析、聚类分析) 4. 结果可视化与解释 5. 撰写分析报告(参考毕设要求[^3])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值