子数组的最小值之和

子数组的最小值之和

给定一个整数数组 A,找到 min(B) 的总和,其中 B 的范围为 A 的每个(连续)子数组。

由于答案可能很大,因此返回答案模 10^9 + 7。

示例:
输入:[3,1,2,4]
输出:17

解释:
子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。
最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。

提示:
1 <= A <= 30000
1 <= A[i] <= 30000

思路

  1. 暴力超时,需要改进下,看了下别人的代码,发现:当数字 x 是最小数字时其所在的子数组的个数 f(x) 可以计算出来。
  2. 我们先定义两个操作,expandLeft(x):返回的是从 x 向左边找第一个小于等于它的数字的索引,若没有返回-1;expandRight(x):返回的是从 x 向右边找第一个小于它的数字的索引,若没有返回数组长度。
  3. 那么 f(x) = [ expandRight(x) - pos(x) ] * [ pos(x) - expandLeft(x) ]
    在这里插入图片描述
  4. 这样稍微改进一下代码就能通过了,但是还能继续改进。因为每次寻找是在整个数组中寻找,很费时,O(n^2)。
  5. 我们可以将数据先排序(稳定排序),当然需要记录一下数据的索引,存储不要用map,虽然 map 会自排序,但是 map 的 key 值唯一,不符合数据要求。然后定义一个 set,里面先插入 -1 和数组长度,并按数据从小到大的顺序数据的索引插入到 set 里面,插入时其前后的索引即为我们需要的expandLeft(x),expandRight(x)的值,这是由 set 的特性决定的,它是一个自排序的容器。
  6. 这样我们就不用再整个数组中寻找了,最费时的只是排序操作,O(nlogn)。

代码

稍微改进的暴力(1528ms):

typedef long long LL;
#define REP(i,s,t) for(int i=(s); i<(t); i++)
const LL M = 1e9 + 7;

class Solution {
public:
    int sumSubarrayMins(vector<int>& A) {
    	LL sum = 0;
        int N = A.size();
        REP(i, 0, N) {
            int l = i - 1, r = i + 1;
            while (l >= 0 && A[i] < A[l]) l--;  //expandLeft
            while (r < A.size() && A[i] <= A[r]) r++;  //expandRight
            sum += (r - i) * (i - l) * A[i];
            if (sum > M) sum -= M;
        }
        return sum;
    }
};

排序后运用 set 特性(184ms):

typedef long long LL;
#define REP(i,s,t) for(int i=(s); i<(t); i++)
const LL M = 1e9 + 7;

class Solution {
public:
    int sumSubarrayMins(vector<int>& A) {
    	LL sum= 0;
        int N = A.size();
        vector<pair<int, int> > P(N);
        REP(i, 0, N) P[i] = make_pair(A[i], i);
        sort(P.begin(), P.end());
        //REP(i, 0, N) cout << P[i].first << " " << P[i].second << endl;
        set<int> se;
        se.insert(-1), se.insert(N);
        REP(i, 0, N) {
            int pos = P[i].second;
            auto it = se.insert(pos).first;
            int r = *next(it), l = *prev(it);
            sum += LL(r - pos)*(pos - l)*P[i].first;
            sum %= M;
        }
        return sum;
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
分治策略是一种经典的算法设计思想,其基本思想是将问题分解成若干个小问题,然后递归求解,最后将问题的解合并起来得到原问题的解。对于求解数组最大值和最小值问题,可以采用分治策略,具体步骤如下: 1. 将数组平均分成两个数组,分别求出两个数组的最大值和最小值。 2. 将两个数组的最大值和最小值进行比较,得出整个数组的最大值和最小值。 3. 递归地执行上述步骤,直到数组的长度为1时,即可得到数组的最大值和最小值。 4. 最后将所有数组的最大值和最小值进行比较,得出整个数组的最大值和最小值。 下面是使用 Python 代码实现该算法: ```python def find_max_min(arr, l, r): # 当数组长度为1时,返回该元素作为最大值和最小值 if l == r: return arr[l], arr[l] # 当数组长度为2时,直接比较两个元素得出最大值和最小值 elif r - l == 1: return max(arr[l], arr[r]), min(arr[l], arr[r]) # 当数组长度大于2时,使用分治法求解 else: mid = (l + r) // 2 max_left, min_left = find_max_min(arr, l, mid) max_right, min_right = find_max_min(arr, mid+1, r) return max(max_left, max_right), min(min_left, min_right) # 测试代码 arr = [3, 5, 1, 7, 9, 2, 8, 4, 6] max_num, min_num = find_max_min(arr, 0, len(arr) - 1) print("Max number:", max_num) print("Min number:", min_num) ``` 该算法的时间复杂度为 $O(n\log n)$,其中 $n$ 为数组的长度。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值