67、AI 模型性能评估指标:吞吐和延时

本文介绍了深度学习模型性能评估中的关键指标——吞吐和延时。吞吐量指的是单位时间内完成的任务量,而延时则是完成一个任务所需的时间。通过ATM取款机的例子,阐述了吞吐量与延时的关系,并指出两者并不直接关联。在神经网络场景中,优化吞吐量有助于提高处理大量数据的效率,而降低延时则能提升用户体验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前面几节,完成一个图片的正确推理识别之后,下一步我们要关注的就是模型的性能。

神经网络的性能很重要,可以看下这一节:神经网络的性能以及那些框架存在的意义

在我们进行模型性能评估之前,介绍一下两个对于性能评估非常重要的概念——吞吐和延时。

很多同学对这两个概念的理解是存在误区的,一般的误区会集中在:认为高吞吐就等于低延时,低吞吐就等于高延时。这样理解是有问题的。

下面我会详细介绍下这两个概念,帮助大家更深入的理解其区别,后面所有涉及模型性能的地方,都会依据这两个指标来做评估。

1、吞吐

吞吐或吞吐量,英文名叫 Throughput,指的是完成一个特定任务的速率,也可以理解为在单位时间内完成的任务量。

对于计算机网络而言,吞吐量的衡量单位一般是 bits / second 或者 Bytes / second。

举个例子,如果说一条数据通路的吞吐量是 40Gbps,那么意味着,如果你往这个数据通路中注入40Gb 的数据量,那么它可以在1秒内流过这条数据通路。

对于神经网络而言&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值