SPFA算法

1. 算法概述

SPFA(Shortest Path Faster Algorithm)算法是Bellman-Ford算法的队列优化版本,用于求解单源最短路径问题。

核心思想

  • 通过动态逼近法,不断松弛边来更新最短路径

  • 使用队列优化,只对可能产生松弛操作的节点进行处理

特点

  • 可以处理带负权边的图

  • 能够检测负权环

  • 在稀疏图上效率较高

2. 算法适用条件

✔ 带权有向图或无向图
✔ 可以处理负权边的情况
✔ 需要检测负权环时特别有用
✖ 不能处理包含负权环的图的最短路径问题

3. 算法步骤

初始化阶段

memset(dist, 0x3f, sizeof dist);  // 所有距离初始化为∞
dist[src] = 0;                    // 源点距离设为0
queue<int> q;
q.push(src);                      // 源点入队
st[src] = true;                   // 标记源点在队列中

主循环过程

while(!q.empty()) {
    int t = q.front();
    q.pop();
    st[t] = false;                // 标记t已出队
    
    for(遍历t的所有邻接边){
        if(可以松弛){
            更新距离;
            if(目标节点不在队列中){
                入队;
                标记在队列中;
            }
        }
    }
}

4. 时间复杂度分析

情况时间复杂度说明
平均情况O(E)在稀疏图上表现良好
最坏情况O(VE)退化为Bellman-Ford

5. 代码模板(C++)

基础版本(求最短路)

const int N = 1e5 + 10;
int dist[N];
int h[N], e[N], ne[N], w[N], idx;
bool st[N];

int spfa(int src, int dest) {
    memset(dist, 0x3f, sizeof dist);
    dist[src] = 0;
    queue<int> q;
    q.push(src);
    st[src] = true;
    
    while(!q.empty()) {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if(dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                if(!st[j]) {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return dist[dest];
}

检测负权环版本

bool spfa() {
    queue<int> q;
    for(int i = 1; i <= n; i++) {  // 所有节点入队
        q.push(i);
        st[i] = true;
    }
    
    while(!q.empty()) {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];
            if(dist[j] > dist[t] + w[i]) {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if(cnt[j] >= n) return true;  // 存在负权环
                if(!st[j]) {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    return false;
}

6. 常见问题

Q1:SPFA和Dijkstra算法的区别?

  • Dijkstra不能处理负权边,SPFA可以

  • Dijkstra使用贪心策略,SPFA使用动态逼近

  • Dijkstra时间复杂度稳定,SPFA在特殊数据下可能退化

Q2:如何判断负权环?

  • 维护一个cnt数组记录节点的入队次数

  • 如果某个节点的cnt ≥ n,说明存在负权环

Q3:为什么SPFA能处理负权边?

  • 它允许节点多次入队,可以重新处理被负权边影响的节点

  • 不像Dijkstra那样一旦确定就不可更改

7. 典型例题

  1. LeetCode 743. 网络延迟时间

  2. ACWING 851 - SPFA求最短路

  3. ACWING 852 - SPFA判断负环

8. 优化技巧

  1. 使用双端队列(deque)代替普通队列

  2. 随机选择队首或队尾插入

  3. 设置最大松弛次数限制防止极端情况

9. 声明

以上笔记仅为学习该算法的学习笔记,如有错误请指出

总结:SPFA算法是处理带负权边图的最短路径问题的有效算法,理解其队列优化思想和负权环检测机制对掌握图论算法很重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值