95、评估使用多线程优化带来的性能提升

本文评估了通过在卷积的co维度应用多线程切分来优化深度学习模型的性能提升。实验显示,在CPU无其他繁重任务的情况下,优化后模型的推理延时从772ms降低到291ms,性能提升约260%,并且保持了推理结果的正确性。尽管具体数值可能因设备环境差异而变化,但性能提升的相对值是显著的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节评估一下,通过对卷积的 co 维度进行多线程切分之后,对于模型的性能提升。

评估下性能

在进行多线程程序运行时,建议电脑中的 CPU 不要有其他繁重的任务执行。

在相同的环境下,分别运行 5th_codegen 和 6th_multi_thread 下的 compile.sh 脚本进行代码编译,然后运行编译后生成的可执行文件 ./resnet。

可以分别获取到权值预加载前后的性能指标。

可以看到性能提升非常明显:优化前平均推理延时为 772 ms,优化后为 291 ms,性能提升了大概 260%,效果很好,而且推理结果也是正确的。

注意:不同电脑机器不同环境下测出来的性能会有差异,大家只需要比对性能提升的相对值即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

董董灿是个攻城狮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值