数据结构——排序

作者:几冬雪来 

时间:2023年4月4日

内容:数据结构排序内容讲解

目录

前言: 

排序: 

1.插入排序: 

2.希尔排序: 

3.希尔排序gap问题:  

结尾: 


前言: 

在前不久我们结束了数据结构中二叉树板块的知识讲解,而今天我们就将开启数据结构新板块——排序的学习。

排序: 

排序作为我们数据结构的一个重要的知识板块,但其实在很久很久之前我们就已经接触过排序的知识了——冒泡排序冒泡排序作为我们在C语言经常使用的一种将无序数组排列为有序数组的方法,它毫无疑问也是众多排序方法中的一份子,在今日我们将来我们的排序。 

1.插入排序: 

首先这里介绍的是我们的插入排序,插入排序在我们的日常生活中经常被使用到。经典的例子就类似我们的扑克牌,在摸完了第一张排之后后面我们每摸上一张牌就要找一个合适的位置将它放入进去(没有整理牌习惯的人另当别论),这种就是我们典型的插入排序。 

既然了解了插入排序大概的操作方法之后,接下来我们就要书写它的代码了,那么插入排序的代码是怎么写的呢?

这里我们就将它们插入排序的代码书写出来了,那么它是怎么样运行的呢?接下来我们就来对其进行讲解。 

首先我们要排序的是一个数组并非一个数,所以我们要写一个循环。与之前的i初始化为0不同,这里我们循环中的i初始化为1。循环一开始我们就将i-1赋值给end,同时将下标为1的结点的值赋值给tmp。接下来因为end为0满足条件所以进入我们的while循环如果这里我们下标为1的结点的值小于下标为0的结点的值,这里我们就将下标为0的值赋值给下标为1处然后end进行--操作这个时候end为-1不符合我们的循环条件这里就不进入循环。最后我们将tmp也赋值给a[end+1]也就是下标为0处。

这里我们将它的图画出来。

同样的,如果我们的a[end]小于tmp的话,这里我们就直接跳出循环,将tmp的值给a[end+1]处即可。这个就是我们的插入排序。

而这里我们的插入排序的时间复杂度是多少呢?最坏的情况如果我们的数组是逆序的,这里我们的时间复杂度为O(N^2),而最好的情况则是顺序且有序时间复杂度为O(N)

2.希尔排序: 

在讲解完了插入排序之后,接下来我们就来讲解的是我们排序板块中一个重要的排序方法——希尔排序希尔排序也是一种插入排序,它又叫缩小增量插入排序

在学习完了插入排序之后,我们可以得知,如果我们的数组越接近顺序有序的话,那么插入排序的时间复杂度会很小如果接近于无序(逆序)的话,那么插入排序的时间复杂度会很大

而这里希尔排序则对其进行了一步优化。

这里就是我们优化后的操作,在进行插入排序之前我们先对其进行预排序的操作使数组更快的从无序变为有序。 

而这里我们的预排序则是使用的分组插排的方法。而且这里的分组插排实际上的操作就是将间隔为gap的值分为一组,对每组数据进入插入排序。这里我们画一张图来演示一下,假设我们的gap的值为3

虽然在进行完了一次分组插排之后,我们的数组依旧是无序的,但是先比较与未进行分组排序的数组,这里的它更加接近于有序。而这种方法的优势在于,如果类似上面这个图,如果我们单纯的进行插入排序的话,作为数组头元素的9如果要到数组的最后边的话,这里要跳n-1次才能到达。但是如果是分组插排的话,这里的9要到最后一个位置的话,我们只需要跳动3次

这里我们也将它的代码写出来,因为我们说过希尔排序也是一种插入排序,因此希尔排序单趟)的代码只需要将插入排序的代码稍微修改即可

这里就是我们希尔排序单趟排序的代码。这里的实验理论可以直接套用插入排序的理论,我就不再写一遍了,并且它的代码有两种书写形式,一个是i在end处,一个是tmp处,同时我们的循环条件也会有所不同,如果是后面这组代码我们i循环终止的条件是i<n-gap,这个时候tmp刚刚好在数组最后的5处,如果像第一种方法判断条件为i<n的话,这里我们的tmp就会越界。 

这里是我们单趟的代码,因为gap将我们的代码分为了3组,这里我们需要走3次

这里解决问题的方法就是在我们原先代码的基础上再套一层循环每次j++之后,它就到我们下一组数组的头元素

但是这里的解决方法并不止一种,我们也可以不再套一层循环就能实现我们的代码,那么这种方法的代码又应该怎么书写的呢?

在这里我们将i初始化为0i的调整改为i++就行了。那么这里是怎么实现的呢?我们再画一个图来表达看看。

在这里一开始的时候,是对第一组数组的一个下标为end和下标为i+gap的值进行一个调换,i++后到达下一组数组,再让它的下标为end和下标为i+gap的值进行一个调换,与上面调换结束一组之后在调换另一组的方法不同,这里我们是先调换一次第一组的两个值,接下来再调换第二组的两个值,当3组都走过了一次之后,接下来我们再对第一组进行第二次的调换

这里我们将代码进行运作。

从结果来看,这里我们的代码虽然相较于原版更接近顺序升序,但是实际上它还并不是有序的,这是为什么呢?这里就要涉及我们gap的问题了。

3.希尔排序gap问题:  

由上面可知,当gap为3这个固定值的时候,我们只是把数组中的间隔为3的值进行了排序。但是也是仅此而已,这里因为gap为固定的值,所以我们的操作仅仅是对代码进行了预排序而已。想要真正的让代码变得有序,理论上我们得再写一个gap为1的代码,但是这样操作的话未免太麻烦了,那么这里我们要怎么设计gap比较合适呢?

 

通过上面这句话,我们可以得出一个结论,在希尔排序之中,gap是变化的。 

而这里的第一种方法就类似我们下图。

一开始gap的值为n每进行一次循环条件为gap大于1gap就除等于2,那么在执行多次循环之后,这里的gap最后会变为1,也就是变成一个单纯的插入排序。 

  

这里就刚刚好完成了我们的排序。又因为在希尔排序中,它并没有规定我们的gap的值,因此在这里我们的gap的值也可以写成。 

 

这里的+1是为了保证最后一次gap的值为1,这两种写法都是可以的。这里我们也总结出来了一个结论。

 

这就是希尔排序的操作

结尾: 

到这里,我们希尔排序的代码就已经写好了,在后面我们还会讲解一下希尔排序的时间复杂度,并且在更后面的地方还有更难的排序在等着我们去解决。最后这里希望这篇博客可以给大家带来帮助。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值