Transformer结构
论文:Attention is all you need
Transformer模型是2017年Google公司在论文《Attention is All You Need》中提出的。在Transformer的基础上,提出了预训练语言BERT模型,成功在多项NLP任务中取得领先的结果。
所以,学习Transformer模型也是以后能够掌握BERT模型的前提,基于此,对于Transformer模型的理论学习在此不展开赘述,将学习的代码以及重要的代码解读附在代码上,务必在细微处也通透了解,达到知其然还能编其然的效果。写此博客,主要是理清知识脉络并且理解原始代码。本文是对近期关于Transformer论文、相关文章、代码进行学习后的知识梳理,仅为自己学习交流之用。因笔者精力有限,如果文中因引用了某些文章观点未标出处还望作者海涵,也希望各位一起学习的读者对文中不恰当的地方进行批评指正。
该图引用于论文《Attention is All You Need》
上图是Transformer模型的结构图。从图中,我们可以看出模型宏观上可分为两个大模块。一个是编码器,一个是解码器。
这有点类似于NLP中的seq2seq结构。在下边的代码中将以翻译为例子展示TRM的Pytorch代码部分,对于难点以及要点在代码中有详细的解释
## from https://github.com/graykode/nlp-tutorial/tree/master/5-1.Transformer
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
import math
def make_batch(sentences):
input_batch = [[src_vocab[n] for n in sentences[0].split()]]
output_batch = [[tgt_vocab[n] for n in sentences[1].split()]]
target_batch = [[tgt_vocab[n] for n in sentences[2].split()]]
return torch.LongTensor(input_batch), torch.LongTensor(output_batch), torch.LongTensor(target_batch)
## 10
def get_attn_subsequent_mask(seq):
"""
seq: [batch_size, tgt_len]
"""
attn_shape = [seq.size(0), seq.size(1), seq.size(1)]
# attn_shape: [batch_size, tgt_len, tgt_len]
subsequence_mask = np.triu(np.ones(attn_shape), k=1) # 生成一个上三角矩阵
subsequence_mask = torch.from_numpy(subsequence_mask).byte()
return subsequence_mask # [batch_size, tgt_len, tgt_len]
## 7. ScaledDotProductAttention
class ScaledDotProductAttention(nn.Module):
def __init__(self):
super(ScaledDotProductAttention, self).__init__()
def forward(self, Q, K, V, attn_mask):
## 输入进来的维度分别是 [batch_size x n_heads x len_q x d_k] K: [batch_size x n_heads x len_k x d_k] V: [batch_size x n_heads x len_k x d_v]
##首先经过matmul函数得到的scores形状是 : [batch_size x n_heads x len_q x len_k]
scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(d_k)
## 然后关键词地方来了,下面这个就是用到了我们之前重点讲的attn_mask,把被mask的地方置为无限小,softmax之后基本就是0,对q的单词不起作用
scores.masked_fill_(attn_mask, -1e9) # Fills elements of self tensor with value where mask is one.
attn = nn.Softmax(dim=-1)(scores)#softmax函数按横行来做
context = torch.matmul(attn, V)
return context, attn
## 6. MultiHeadAttention
class MultiHeadAttention(nn.Module):
def __init__(self):
super(MultiHeadAttention, self).__init__()
## 输入进来的QKV是相等的,我们会使用映射linear做一个映射得到参数矩阵Wq, Wk,Wv
self.W_Q = nn.Linear(d_model, d_k * n_heads)
self.W_K = nn.Linear(d_model, d_k * n_heads)
self.W_V = nn.Linear(d_model, d_v * n_heads)
self.linear = nn.Linear(n_heads * d_v, d_model)
self.layer_norm = nn.LayerNorm(d_model)
def forward(self, Q, K, V, attn_mask):
## 这个多头分为