Flat-Lattice-Transformer模型源码测试

Flat-Lattice-Transformer模型源码测试
1. 下载embedding
2. 下载数据集
2.1. ~~OntoNotes~~
2.2. MSRA
2.2.1. 数据预处理
2.3. Weibo
2.3.1. 数据预处理
2.4. ResumeNER
3. 配置环境
4. 配置`paths.py`文件
5. 配置日志文件
5.1. 使用V0中的`flat_main.py`
5.2. 使用V1中的`flat_main.py`
6. embedding文件预处理
7. 训练模型
7.1. GPU设备
7.2. CPU设备
8. 查看模型结果
8.1. MSRA
8.2. Weibo
8.2.1. V0结果摘要
8.2.2. V1结果摘要
8.3. ResumeNER
8.3.1. V0结果摘要
8.3.2. V1结果摘要

论文地址:
FLAT: Chinese NER Using Flat-Lattice Transformer
原github项目地址:
Flat-Lattice-Transformer
1. 下载embedding
Character and Bigram embeddings (gigaword_chn.all.a2b.{‘uni’ or ‘bi’}.ite50.vec) :

下载地址

Word(Lattice) embeddings:yj, (ctb.50d.vec)

下载地址

Word(Lattice) embeddings:ls, (sgns.merge.word.bz2)

下载地址

在项目根目录下新建文件夹embeddings,将所有embedding文件都放入embeddings/文件夹下面。

2. 下载数据集

2.1. OntoNotes

需要注册申请,暂无法获取

2.2. MSRA

下载地址

MSRA数据需要进行预处理,原始数据为bio标注,需要转成bmes。

2.2.1. 数据预处理

  • 新建py脚本文件util/prepro_data.py,内容如下:
#!usr/bin/env python
# encoding: utf-8

from const.paths import msra_ner_cn_path
import os
import sys

def BIO2BMES(input_file, output_file):
    print("Convert BIO -> BMES for file:", input_file)
    with open(input_file,'r') as in_file:
        fins = in_file.readlines()
    fout = open(output_file,'w')
    words = []
    labels = []
    for line in fins:
        if len(line) < 3:
            sent_len = len(words)
            for idx in range(sent_len):
                if "-" not in labels[idx]:
                    fout.write(words[idx]+" "+labels[idx]+"\n")
                else:
                    label_type = labels[idx].split('-')[-1]
                    if "B-" in labels[idx]:
                        if (idx == sent_len - 1) or ("I-" not in labels[idx+1]):
                            fout.write(words[idx]+" S-"+label_type+"\n")
                        else:
                            fout.write(words[idx]+" B-"+label_type+"\n")
                    elif "I-" in labels[idx]:
                        if (idx == sent_len - 1) or ("I-" not in labels[idx+1]):
                            fout.write(words[idx]+" E-"+label_type+"\n")
                        else:
                            fout.write(words[idx]+" M-"+label_type+"\n")
            fout.write('\n')
            words = []
            labels = []
        else:
            if line == '0\t\n':
                words.append('0')
                labels.append('O')
            else:
                pair = line.strip('\n').split()
                words.append(pair[0])
                labels.append(pair[-1].upper())
    fout.close()
    print("BMES file generated:", output_file)

def msra_bio2bmes(msrapath):
    train_dev_path = os.path.join(msrapath, 'msra_train_bio.txt')
    train_dev_path_out = os.path.join(msrapath, 'train_dev.char.bmes')
    test_path = os.path.join(msrapath, 'msra_test_bio.txt')
    test_path_out = os.path.join(msrapath, 'test.char.bmes')

    BIO2BMES(train_dev_path, train_dev_path_out)
    BIO2BMES(test_path, test_path_out)

if __name__ == '__main__':
    msra_bio2bmes(msra_ner_cn_path)
    print('- Done!')


###按照配置paths.py文件,配置好路径以后,直接运行脚本:

cd util
python prepro_data.py

###如果要使用clip(限制句子长度,将长句子进行拆分)的MSRA数据训练模型还需要*_clip1文件,可以在项目根目录运行下面命令生成:
python preprocess.py --clip_msra

2.3. Weibo

下载地址

weibo数据需要进行预处理,将原始数据中的seg信息去掉。

2.3.1. 数据预处理

  • 在py脚本文件util/prepro_data.py中添加如下内容:
    #!usr/bin/env python
    # encoding: utf-8
    
    from const.paths import weibo_ner_path
    import os
    
    def deseg_weibo(weibopath):
        train_path = os.path.join(weibopath, 'weiboNER_2nd_conll.train')
        dev_path = os.path.join(weibopath, 'weiboNER_2nd_conll.dev')
        test_path = os.path.join(weibopath, 'weiboNER_2nd_conll.test')
    
        for data_file in [train_path, dev_path, test_path]:
            output_file = data_file + "_deseg"
            f_out = open(output_file, "w", encoding='utf8')
            with open(data_file, "r", encoding='utf8') as f:
                for line in f.readlines():
                    line = line.strip()
                    if line != "":
                        span_list = line.split('\t')
                        raw_char = ''.join(list(span_list[0])[:-1])
                        tag = span_list[-1]
                        f_out.write(' '.join([raw_char, tag]) + '\n')
                    else:
                        f_out.write('\n')
    
    if __name__ == '__main__':
        deseg_weibo(weibo_ner_path)
        print('- Done!')
    
    #!usr/bin/env python
    # encoding: utf-8
    
    from const.paths import weibo_ner_path
    import os
    
    def deseg_weibo(weibopath):
        train_path = os.path.join(weibopath, 'weiboNER_2nd_conll.train')
        dev_path = os.path.join(weibopath, 'weiboNER_2nd_conll.dev')
        test_path = os.path.join(weibopath, 'weiboNER_2nd_conll.test')
    
        for data_file in [train_path, dev_path, test_path]:
            output_file = data_file + "_deseg"
            f_out = open(output_file, "w", encoding='utf8')
            with open(data_file, "r", encoding='utf8') as f:
                for line in f.readlines():
                    line = line.strip()
                    if line != "":
                        span_list = line.split('\t')
                        raw_char = ''.join(list(span_list[0])[:-1])
                        tag = span_list[-1]
                        f_out.write(' '.join([raw_char, tag]) + '\n')
                    else:
                        f_out.write('\n')
    
    if __name__ == '__main__':
        deseg_weibo(weibo_ner_path)
        print('- Done!')
    
    ## 可以先直接运行脚本,生成数据文件,这样就没必要修改load_data.py文件了。

2.4. ResumeNER

下载地址

ResumeNER数据可直接使用。

将所有数据集文件都放入data/文件夹下面,文件夹结构如下:

-data
--Resume
---dev.char.bmes
---test.char.bmes
---train.char.bmes
--MSRA
---msra_test_bio.txt
---msra_train_bio.txt
---test.char.bmes
---train_dev.char.bmes
---test.char.bmes_clip1
---train_dev.char.bmes_clip1
--Weibo
---weiboNER_2nd_conll.dev
---weiboNER_2nd_conll.test
---weiboNER_2nd_conll.train
---weiboNER_2nd_conll.dev_deseg
---weiboNER_2nd_conll.test_deseg
---weiboNER_2nd_conll.train_deseg

3. 配置环境

conda create -n FLAT python=3.7.3
# gpu
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
# cpu
conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly -c pytorch
pip install FastNLP==0.5.0 -i https://pypi.doubanio.com/simple
pip install Numpy==1.16.4 -i https://pypi.doubanio.com/simple
pip install fitlog -i https://pypi.doubanio.com/simple
pip install pytz -i https://pypi.doubanio.com/simple

其中FastNLP和fitlog都是复旦大学计算机科学技术学院自然语言处理与深度学习组的fastNLP团队开发的。

可直接运行conda env create -f environment.yml命令,从environment.yml或者environment-gpu.yml文件中创建名为FLAT的conda环境。

4. 配置paths.py文件

修改paths.py文件为如下内容,然后只用配置PROJECT_DIR(项目根目录)即可。

PROJECT_DIR = '/home/appendDisk/PycharmProjects/NER/Flat-Lattice-Transformer'

yangjie_rich_pretrain_unigram_path = PROJECT_DIR + '/embeddings/gigaword_chn.all.a2b.uni.ite50.vec'
yangjie_rich_pretrain_bigram_path = PROJECT_DIR + '/embeddings/gigaword_chn.all.a2b.bi.ite50.vec'
yangjie_rich_pretrain_word_path = PROJECT_DIR + '/embeddings/ctb.50d.vec'
yangjie_rich_pretrain_char_and_word_path = PROJECT_DIR + '/embeddings/yangjie_word_char_mix.txt'
# lk_word_path = '/remote-home/xnli/data/pretrain/chinese/sgns.merge.word'
lk_word_path_2 = PROJECT_DIR + '/embeddings/sgns.merge.word_2'



# ontonote4ner_cn_path = PROJECT_DIR + '/data/OntoNote4'
msra_ner_cn_path = PROJECT_DIR + '/data/MSRA'
resume_ner_path = PROJECT_DIR + '/data/Resume'
weibo_ner_path = PROJECT_DIR + '/data/Weibo'

5. 配置日志文件

5.1. 使用V0中的flat_main.py

fitlog init V0
cd V0
# fitlog log logs

修改V0/flat_main.py文件:

import fitlog
# use_fitlog = False
use_fitlog = True

5.2. 使用V1中的flat_main.py

fitlog init V1
cd V1
# fitlog log logs

6. embedding文件预处理

运行下面脚本:

python preprocess.py

7. 训练模型

7.1. GPU设备

python flat_main.py --dataset resume
# 如果默认device报gpu OOM错误,可以通过nvidia-smi命令查看闲置的编号(如2),然后运行下面命令
python flat_main.py --dataset resume --device 2

目前可用的数据文件只有resume

MSRA和weibo数据好像都要做预处理,项目中没有给出详细的预处理信息

OntoNotes数据暂时无法获取

7.2. CPU设备 

python flat_main.py --dataset resume --device cpu还是会报找不到gpu未指定cpu的错误,参数未生效。

报错内容如下:

ValueError: There is no usable gpu. set `device` as `cpu` or `None`.
 

修改V0/flat_main.py文件:

if args.device!='cpu':
    if args.device == 'None':# 添加内容
        device = None# 添加内容
    else:# 添加内容
        assert args.device.isdigit()
        device = torch.device('cuda:{}'.format(args.device))
else:
    device = torch.device('cpu')

refresh_data = True

####运行下面命令即可:
python flat_main.py --dataset resume --device None

8. 查看模型结果 

 

以下是在gpu服务器上运行的结果
仅输出了模型相关参数,没有输出训练好的模型。

8.1. MSRA

目前的只用了一个device,一直报CUDA out of memory,目前跑不了了,看看后面能不能找到支持多GPU运行的办法。

github issue的类似问题里,作者说”吃的显存应该和训练数据中的最长句子的长度相关,对10g显存来说,一般支持长度200的句子“。
也有可能是数据预处理的问题,看看后面作者会不会公开预处理的脚本吧。

8.2. Weibo

8.2.1. V0结果摘要

 时间信息:/V0/logs/log_20201202_110755/other.log

{"other": {"cost_time": "0h20m18s"}}
 

评价指标:/V0/logs/log_20201202_110755/metric.log

Step:6750    {"metric": {"SpanFPreRecMetric": {"f": 0.626109, "pre": 0.6175, "rec": 0.634961}, "label_acc": {"acc": 0.961509}}, "step": 6750, "epoch": 50}
Step:6750    {"metric": {"data_test": {"SpanFPreRecMetric": {"f": 0.592593, "pre": 0.591885, "rec": 0.593301}, "label_acc": {"acc": 0.956756}}}, "step": 6750, "epoch": 50}

 

其中最大的F1值为:0.635538

参考链接:

https://blog.csdn.net/weixin_47376915/article/details/110468729

 

 

 

 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值