手摸手教你训练嵌入式模型(embedding)

embedding模型训练

注意:如果是6G显存,使用384分辨率, 8G以上可以使用512分辨率的图片。

下面我们直接进入主题。

首先我们进行一些基础的设置。

1、设置->训练,勾选,屏蔽VAE,如果主模型下有VAE,可以进行改名进行屏蔽。

image-20230518153914802.png

2、设置->反推设置,反推:deepbooru按字母阈值,取消,同时分数阈值设置在0.7就可以,新手建议0.7-0.75。

分数阈值如果开的越低,那么保留的图片原始细节越多,反之这个参数开的越高,过滤掉的标签越高训练的模型保持的细节也就越少。

image-20230518154131233.png

保存以上配置。

接下来就开始进入今天的主题了。

主页面上选择“训练”,创建嵌入式模型。

名称随便起一个,这里我们使用negan_first,每个词元(token)的向量数新手推荐设置在6-8,这里设置成7。

点击创建嵌入式模型。

image-20230518155238333.png

可以看到右边系统帮我们创建了negan_first.pt的模型文件。

接着就是准备训练的素材了,保底30张,推荐50-100张(必须是正方形),这里使用的是512*512,画风尽量保持统一。

在sd的根目录下创建个文件夹train/negan_first,在negan_first文件夹下继续创建input和output文件夹。将我们准备的50张图片放到input。

image-20230518162930771.png

接着回到我们的webui界面,点击“图像预处理”,将刚才的input路径填写在源路径,目标路径填写output的路径(此处都使用了绝对路径)。 同时勾选“Keep original size”、“创建水平翻转副本”、“使用 BLIP 生成标签 (自然语言)”三个选项。设置完成后点击“预处理”进行处理。

image-20230518163436840.png

等待完成以后,就可以在output文件夹里面查看了。一个文本对应一个图片。

接下来就是真正的训练了,点击“训练”。

image-20230518165258661.png

如上图所示“嵌入式模型”就选我们创建的negan_fitst,其他参数保持默认,提示词模板选择subject_filewords.txt(角色)。

高度和宽度保持512,数据集目录就是上一步的output,日志目录随便填一个,这里为了方便,直接在train下面建了个log文件夹。步数给个1万就行。

image-20230518165258661.png

配置完成后,点击训练嵌入式模型,接下来就是漫长的等待了。

完成以后,我们就可以使用我们训练的模型了。

直接到文生图,点击“显示/隐藏模型"的按钮,在嵌入式模型中找到我们的”negan_first“模型,直接点击,然后加上对应的提示词,就可以生成图片了。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值