https://arxiv.org/abs/1704.04368
指针生成网路文章连接
本文提出一种网络结构,在多句上下文总结中解决以上三个问题。最近的摘要式模型主要关注与标题生成(将一两句话缩减至单一标题),我们相信长文本摘要挑战与实用性并存,本文使用CNN/Daily Mail数据集,其包含新闻文章(平均39句)和多句摘要,结果显示,本文提出的模型高于SOTA模型2个ROUGE点。
本文的混合指针生成模型通过指针从原文中复制单词,文本生成准确性提高,并解决了OOV问题,同时保留生成原文中未出现的新单词的能力,该网络可视为摘要方法和抽取方法之间的平衡,类似于应用于短文本摘要的 CopyNet 和 Forced-Attention Sentence Compression 模型。我们提出一种新型的覆盖向量(源于NMT,可用于跟踪和控制原文的覆盖率),结果表明,覆盖机制对于消除重复性非常有效。
2 本文模型
2.1 Seq2Seq 注意力模型
本文基线模型类似于图2中的模型: