PGN: 指针生成网络

https://arxiv.org/abs/1704.04368

指针生成网路文章连接

本文提出一种网络结构,在多句上下文总结中解决以上三个问题。最近的摘要式模型主要关注与标题生成(将一两句话缩减至单一标题),我们相信长文本摘要挑战与实用性并存,本文使用CNN/Daily Mail数据集,其包含新闻文章(平均39句)和多句摘要,结果显示,本文提出的模型高于SOTA模型2个ROUGE点。

本文的混合指针生成模型通过指针从原文中复制单词,文本生成准确性提高,并解决了OOV问题,同时保留生成原文中未出现的新单词的能力,该网络可视为摘要方法和抽取方法之间的平衡,类似于应用于短文本摘要的 CopyNet 和 Forced-Attention Sentence Compression 模型。我们提出一种新型的覆盖向量(源于NMT,可用于跟踪和控制原文的覆盖率),结果表明,覆盖机制对于消除重复性非常有效。

2 本文模型

2.1 Seq2Seq 注意力模型

本文基线模型类似于图2中的模型:

2.2 指针生成网络

2.3 覆盖机制(Coverage mechanism)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值