第二章第1节 多层感知机

我们已经介绍了包括现行回归和softmax回归在内的单层神经网络。然而深度学习主要关注多层模型。从本章开始,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

2.1.1 隐藏层

多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。图2.1展示了一个多层感知机的神经网络图。

                                                                                

                                                                           图2.1:带有隐藏层的多层感知机。它含有一个隐藏层,该层中有5个隐藏单元

在图2.1所示的多层感知机中,输入和输出个数分别为4和3,中间的隐藏层中包含了5个隐藏单元(hidden unit)。由于输入层不涉及计算,图2.1中的多层感知机的层数为2。有图2.1可见,隐藏层中的神经元和输入层中各个输入完全连接,输出层中的神经元和隐藏层中的各个神经元也完全连接。因此,多层感知机中的隐藏层和输出层都是全连接层。

具体来说,给定一个小批量样本\boldsymbol{X} \in \mathbb{R}^{n \times d},其批量大小为n,输入个数为d。假设多层感知机只有一个隐藏层,其中隐藏层单元个数为h。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为H,有\boldsymbol{H} \in \mathbb{R}^{n \times h}。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为\boldsymbol{W}_h \in \mathbb{R}^{d \times h}\boldsymbol{b}_h \in \mathbb{R}^{1 \times h},输出层的权重和偏差参数分别为\boldsymbol{W}_o \in \mathbb{R}^{h \times q}\boldsymbol{b}_o \in \mathbb{R}^{1 \times q}

我们先来看一种含单隐藏层的多层感知机的设计。其输出\boldsymbol{O} \in \mathbb{R}^{n \times q}的计算为

                                                                                    \begin{aligned} \boldsymbol{H} &= \boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h,\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}

也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到

                                                                                     \boldsymbol{O} = (\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h)\boldsymbol{W}_o + \boldsymbol{b}_o = \boldsymbol{X} \boldsymbol{W}_h\boldsymbol{W}_o + \boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o

从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为\boldsymbol{W}_h\boldsymbol{W}_o,偏差参数为\boldsymbol{b}_h \boldsymbol{W}_o + \boldsymbol{b}_o。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

2.1.2 激活函数

上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而对多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。下面我们介绍几个常用的激活函数。

ReLU函数

ReLu(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素x,该函数定义为

                                                                                         \text{ReLU}(x) = \max(x, 0)

可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。

我们接下来通过NDArray提供的relu函数来绘制ReLU函数。可以看到,该激活函数时一个两段线性函数。

显然,当输入为负数时,ReLU函数的倒数为0;当输入为正数时,ReLU函数的导数为1。尽管输入为0时ReLU函数不可导,但是我们可以取此处的导数为0.下面绘制ReLU函数的导数。

sigmoid函数

sigmoid函数可以将元素的值变换到0和1之间:

                                                                                                        \text{sigmoid}(x) = \frac{1}{1 + \exp(-x)}

sigmoid函数在早期的神经网络中较为普遍,但它目前逐渐被更简单的ReLU函数取代。在后面“循环神经网络”一章中我们会介绍如何利用它值域在0到1之间这一特性来控制信息在神经网络中的流动。下面绘制了sigmoid函数。当输入接近0时,sigmoid函数接近线性变换。

 

依据链式法则,sigmoid函数的导数

                                                                                                   \text{sigmoid}'(x) = \text{sigmoid}(x)\left(1-\text{sigmoid}(x)\right)

下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0.

tanh函数

tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

                                                                                                  \text{tanh}(x) = \frac{1 - \exp(-2x)}{1 + \exp(-2x)}

我们接着绘制tanh函数 。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。

依据链式法则,tanh函数的导数

                                                                                         \text{tanh}'(x) = 1 - \text{tanh}^2(x)

下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。

2.1.3 多层感知机

多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:

                                                                                          \begin{aligned} \boldsymbol{H} &= \phi(\boldsymbol{X} \boldsymbol{W}_h + \boldsymbol{b}_h),\\ \boldsymbol{O} &= \boldsymbol{H} \boldsymbol{W}_o + \boldsymbol{b}_o, \end{aligned}

其中表示\phi激活函数。在分类问题中,我们可以对输出\boldsymbol{O}做softmax运算,并使用softmax回归中的交叉熵损失函数。在回归问题中,我们将输出层的输出个数设为1,并将输出\boldsymbol{O}直接提供给线性回归中使用的平方损失函数。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值