机机器学习
文章平均质量分 86
董云龙
这个作者很懒,什么都没留下…
展开
-
机器学习之logistic回归
1. 指数分布族1.1 定义指数族分布(exponential family of distributions)亦称指数型分布族,在上世纪30年代中期被提出,在概率学和统计学中,它是一些有着特殊形式的概率分布的集合,是统计中最重要的参数分布族,包含了二项分布、正态分布,指数分布、伯努利分布、泊松分布、gamma分布、beta分布等.指数分布族为很多重要而且常用的概率分布提供了统一的框架...原创 2018-02-13 17:37:06 · 408 阅读 · 0 评论 -
机器学习之PCA降维
1. 前言机器学习中,样本的数量和维度是一个很重要的度量,同时影响着最终模型的准确性以及训练模型所消耗的资源。过多的维度,将会造成维度灾难,同时增加训练模型的时间。 维度灾难简而言之,在样本数一定的情况下,随着维度的增加,样本的总空间增大,相同数量样本所占总样本空间的比值在降低,即,在高纬度下,样本的分布变得稀疏,为了避免出现过拟合,则需要增加样本的数量或者降低数据的维度。 主成分分析(P...原创 2018-02-02 21:40:58 · 1006 阅读 · 0 评论 -
机器学习之LDA降维
1. PCA缺点在上篇介绍PCA的文章中有一句话是: PCA是一种能够极大提升无监督特征学习速度的数据降维算法这里很明显的说明,PCA适用于非监督学习的数据降维,显而易见,在进行数据降维的时候,我们并没有考虑数据的类别信息,仅仅是针对数据的特征来进行学习.当已知数据的类别时,在某些情况下,PCA的效果将会非常差.例如: 如上图所示,如果使用PCA进行降维,将会映射到Y轴上(...原创 2018-03-25 09:51:57 · 2581 阅读 · 0 评论 -
机器学习之k-means算法
1. K-mean聚类算法在聚类问题中,假设训练数据 {x(1),x(2),...,x(m),}x(i)∈Rn{x(1),x(2),...,x(m),}x(i)∈Rn\{x^{(1)}, x^{(2)},...,x^{(m)},\}x^{(i)} \in \mathbb{R}^n 我们想要将其分成几组聚合的”cluster”,但是没有标签y, 所以这是一个非监督的学习算法. K-m...原创 2018-03-30 20:08:20 · 1236 阅读 · 0 评论