- 博客(167)
- 资源 (6)
- 收藏
- 关注
原创 早停法(Early_Stopping)
设定监视值不再发生改善前允许训练的最大次数。:在模型达到最好效果的时候停止训练。设定一个监视值(monitor)
2025-12-14 15:23:51
22
原创 REST--GCA
点击功能连接图形计算界面的“Voxel wise”按钮或 ROI List 图形界面的“Add ROI”按钮(点击功能连接图形计算界面的“ROI wise”按钮可出现 ROI List 图形界面,如图可出现定义ROI 的图形界面(1)种子点 ROI,指一个球形区域,通过中心点坐标及半径确定;(2)MASK 类型的 ROI;(3)时间序列。(1)从统计 t 图或 F 图中选取感兴趣的团块(在应用一定阈值后)(2)从 AAL 模板选择特定脑区。
2025-12-14 00:49:01
84
原创 利用切片实现AD诊断
目标:利用切片实现AD诊断数据划分:143例用于训练,62例用于验证,51例用于测试结果:训练30次后,验证集准确度为80.65%利用测试集数据进行测试,51例数据可以正确识别出42例。验证方法:使用五折交叉验证ROC曲线下面积为0.92#[!
2025-12-14 00:45:35
554
原创 matlab debug 调试程序
如果有改动,保存程序之后,才可以重新设置断点。点击Quit Debugging 退出调试。设置断点(一般在循环之前),点击运行。然后点step分步运行。
2025-12-14 00:44:38
45
原创 评估指标查准率和召回率
虽然查到的10条文献中只有5条是有用的,查准率很低,可是我们把所有的相关文献都找了出来,查全率很高.借用一个例子,在上网搜索文献时,搜到10条结果,其中有5条是相关文献,另外5条是无关文献.这也从另一方面说明了这两种指标要搭配使用,不能只依赖于其中一种.这样,查准率 = 5 / 10 = 50%则查全率 = 5 / 5 = 100%后来发现整个网上只有这5条相关文献,评估预测的准不准(主要看预测结果)评估预测的全不全(主要看金标准)
2025-12-14 00:43:26
73
原创 python2与python3的兼容
包禁用python2.x的语句,采用python3.x的print()函数。包可实现python2.x与python3.x的兼容。print语句变成print()函数。
2025-12-13 19:12:30
132
原创 RS-fMRI统计分析及作图入门
结果含义:group1 > group2,表示G1的低频振幅高于G2。RS-fMRI培训 直播-RS-fMRI统计分析及作图入门。P_M_C:减的方向,这里代表病人减正常对照-- P-C。计算方法:全脑各个体素的ALFF相加再除以体素个数。大于2.5mm或者2.5度根据个人标准决定是否排除。查看扫描质量,扫描时要注意扫到脑顶。大于3mm或者3度理论上予以排除。mALFF : 平均ALFF。设置p值,0.01或0.05。montage:显示多层图像。蓝色:A<B 红色反之。设置colorbar。
2025-12-13 19:03:21
62
原创 卷积神经网络中的自适应池化
自适应池化(Adaptive Pooling)是深度学习中常用的一种池化操作,它能够根据目标输出尺寸自动调整池化窗口的大小和步长,以保证输出特征图的尺寸符合指定的大小。与普通池化(如最大池化、平均池化)不同,普通池化需要手动设置窗口大小和步长,而自适应池化只需要指定输出尺寸即可。自适应池化能够根据输入特征图的大小和期望的输出尺寸,自动计算池化窗口的大小和步长,从而无需手动指定这些参数。这种灵活性使得网络可以处理不同尺寸的输入,同时保证输出特征图具有固定的尺寸,便于后续的全连接层或其他结构的处理。
2025-12-13 18:53:50
283
原创 脑影像预处理步骤及分析指标
利用SPM12 或者DPABI(DPARSF)处理医学影像特别是脑影像的时候,有一些分析指标可以使用,比如ALFF(低频振幅)、ReHo(局部一致性)、ICA(独立成分分析)、FC(功能连接)等。
2025-12-13 17:11:08
147
原创 用AE制作电话字幕
如果AE不显示插件,在AE菜单栏的"编辑"–“首选项”–"脚本和表达式"中把"允许脚本写入文件和访问网络"打勾“:句子与句子之间用空格隔开,不可用换行.在"窗口"中打开TypeMonkey。:字体、颜色可根据需要自行调整。
2025-12-13 00:13:43
97
原创 利用格式工厂改变视频大小
有时候会出现直接更改大小的时候,导出的视频时常超短的现象,这是因为视频线压缩也是有极限的,在给定条件下达到了压缩极限就只好把时长截短。解释:乘8的原因是1KB = 8bit(1字节等于8比特),ps表示每秒,合起来正好是码率的单位Kbps.解决办法:更改视频分辨率,比如原来是1080p的,更改成480p也完全可以在微信上观看。在“配置”选项中更改视频码率即可将视频大小做出相应改变。打开格式工厂,把视频拖进来,点击“配置”,在弹出的选项中选择大小。问题描述:视频大小超过20M,无法通过微信发送。
2025-12-12 19:18:37
127
原创 医学影像的像素值为什么是65536
一个汉字占2个字节,因为汉字数量远不止128个。2个字节可以囊括65536个汉字,方能足够使用。真彩色是RGB三通道,每个通道1个字节,共3*8=24位。色彩范围为2^24≈1677万。8位即128个字可以表示各种字母,包括大小写。DICOM协议把给每个像素值的存储空间是2个字节。采用uint8的类型,取值范围在0~256之间。一个像素点所占的存储空间为2个字节,即2Byte。uint16的取值范围在0~65536之间。2个字节是16位,2^16=65536。一个英文字母占1个字节。
2025-12-12 19:10:22
150
原创 已经安装了PyTorch,Jupyter Notebook仍然报错“No module named torch“
已经安装了PyTorch,Jupyter Notebook仍然报错"No module named torch"点击右上角的Python3(ipykernel),这个按钮的功能是switch kernel。例如这里我换成了py312,代表python 3.12版本。然后更换kernel,
2025-12-12 11:39:17
253
原创 CNN和RNN结合提升分类效果
把每个时间点上包含的特征用CNN提取出来,然后利用LSTM整合各个时间点提取到的特征,最后融合所有特征得到一个输出.(取10个结构相同的模型,各自单独训练,得到相互独立的10个分类结果,再将10个结果平均起来作为最终的分类结果)(AD病人的fMRI代谢发生改变,相关脑区代谢降低,保留这部分脑区的时间序列,小脑和枕叶代谢代偿性增高,不保留)整个网络是一个"多对一"的结构,输入各个时间点上的特征信息,输出分类结果。:评价分类器的性能,保证模型对数据集中的各部分的数据都是有效的。
2025-12-11 16:05:52
485
原创 python构建结构体
定义一个类 HelloWorld,用于模拟结构体# 初始化类的属性self.ID = '0619' # 属性 ID,存储一个字符串self.size = 543 # 属性 size,存储一个整数" # 属性 seq,存储一个字符串# 创建类的实例# 打印实例的属性print(a.ID) # 输出: 0619print(a.size) # 输出: 543print(a.seq) # 输出: HELLO,WORLD!代码说明。
2025-12-11 09:55:05
250
原创 python中的指针
print(a) 相当于是用钥匙a重新打开抽屉查看,这时候自然会看到[1, 2, 3, 4]打个比方说,就好像是一个抽屉,在里面放了[1,2,3],然后a相当于是一把钥匙指向这个抽屉,这是因为a = [3] 这个语句就不再是往抽屉里面放东西了,这里的b = a.copy() 就相当于是新开了一个抽屉,自然就不会相互影响了。所以打开b抽屉,还是原来的那个空抽屉,打开a抽屉,就是另一个抽屉了。后面的b = a相当于是又配了一把钥匙,但是指向的抽屉还是同一个。运行这段代码,会输出 [3] []
2025-12-11 09:30:37
177
原创 计算几个脑区之间的功能连接FC数值并进行组间比较
ROI大小需要与预处理后的功能像一致,如果不一致,用SPM-coregister重采样,用mricron查看效果。根据图谱合并脑区(利用SPM-imagecalcualtor)用DPARSF定义ROI分析FC。用python比较FC结果。
2025-12-09 11:35:35
132
原创 nii图像保存前几层
读取nifti文件,改变nii文件z轴的层数,统一保存前65层,其他维度保持原样。比如一个nii文件大小为128 x 128 x 70,更改后为128 x128 x 65,然后输出的图像还是nii格式。有一系列文件夹,每个文件夹下都有这样一个nii文件,想批量应用上面的代码,把每个文件夹下’segresult_'开头的nii文件截取前65层,生成的65层文件保存在原来的文件夹下。
2025-12-09 11:25:41
150
原创 数据分类与显著差异
就好像两台电脑和一个鼠标,如果你后面知道了两台电脑一个是联想的一个是华硕的,而鼠标是联想的。而如果没有具体的分类标准,我们便不能说两个看上去显著不同的物体是不可以归为一类的。人们就可以把人和猴子归为一类,因为跟苍蝇这个物种比起来,人和猴子都是哺乳动物。比如把几个人和猴子放在一起,常规的分类思路就是人和人一类,猴子则归为一类。再比如,两个人和一只鼠,按照这个条件,人和人一类,鼠一类,是人之常情。这又说明,挖掘的样本信息越丰富,可以分类的结果也会越多种多样。但是如果这两个人是一个男孩一个女孩,而鼠是雄性的呢?
2025-12-09 11:12:55
126
原创 DTI数据处理流程
原始图像、mask、采集参数acqparams.txt、索引值index.txt、bvec、bval。其中 10 这个数值要改为原始图像的volume数(时间点)。打开原始DTI图像即可看到。acqparams.txt可以按照扫描方向采用默认设置。0.3代表颅骨剥离的程度,数值越大剥离的越多。bvec代表方向,bval代表大小。:剥颅骨后的图像、图像掩膜mask。采集参数acqparams.tx。索引值index.txt。
2025-12-09 11:09:39
1023
原创 查全率与查准率
查准率和查全率是一对矛盾的指标,想让挑出来的西瓜中好西瓜的比例高,就要提高门槛精挑细选,一些品相一般的好西瓜就会被漏掉。查准率(precision):算法挑出来的所有西瓜中有多少比例是好西瓜;查全率(recall):所有的好西瓜中有多少比例被算法挑选了出来。敏感性高,稍微觉得有问题,就纳入阳性。即敏感性高的模型,特异性会低一点。也就是查全率与查准率之间的关系。- 周志华《机器学习》相当于查准率↑查全率↓。
2025-12-09 11:01:26
67
原创 gretna 脑网络拓扑属性分析参数设定
如果遇到有的地方像素值不是整数,原因是做了平滑。设置稀疏度 0.1 表示前10%boundingbox 上面一行表示。这时改一下设置 输出的数据类型 改成。设置相关性阈值 比如 小于。两个点可以约束一个立方体。机器发热 信号会向上漂移。Scrubbing是一种。可以直接输入到ID框中。做脑网络的时候,一般。
2025-12-09 10:05:49
586
RSN-template 功能脑图谱 ,Yeo7功能图谱 功能影像图谱 地图集
2025-12-08
软件说明书 工具包 神经影像 医学影像 基于matlab REST-Manual-cn 【神经影像分析】基于MATLAB的静息态fMRI数据处理工具包:REST
2025-12-08
包含AAL-MNI152-1x1x1.nii及Yeo-7-MNI152-1x1x1.nii两个大小和分辨率相同的脑图谱
2025-12-02
时间序列分类示例数据.zip
2020-06-30
Nifti程序包,用于写入,读取和处理医学影像,适用于MATLAB
2018-09-29
xjview 一款用于显示激活脑区,查看结果报告的工具
2019-03-17
《神经网络与深度学习(neural networks and deep learning)》中文版
2018-09-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅