深度学习中的TTA(Test Time Augmentation)--测试时数据增强技术

定义:TTA(Test Time Augmentation):测试时数据增强
方法:测试时将原始数据做不同形式的增强,然后取结果的平均值作为最终结果
作用:可以进一步提升最终结果的精度

原因:如果只对图像做一种增强时,采用的变换可能会使图像关键信息(即特征)丢失,
比如在对图像做剪切变换时,可能会把关键特征丢掉.
例如在这个狗狗识别的场景中,我们选出预测错误的样本进行查看:

在这里插入图片描述
进一步找出原因可以发现,原来是在对图像剪切增强处理时,把图像尺寸进行了变换,
形状变成了正方形:
在这里插入图片描述
狗狗的头部在增强变换时被裁剪掉,
这样一来就不难看出预测错误的原因了.

而采用TTA(测试时增强),可以对一幅图像做多种变换,创造出多个不同版本,包括不同区域裁剪更改缩放程度等,然后对多个版本数据进行计算最后得到平均输出作为最终结果,提高了结果的稳定性和精准度.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值