来自北大算法课的Leetcode题解:120. 三角形最小路径和

优化动态规划解决三角形最短路径问题
本文探讨了一种使用动态规划解决三角形中最短路径问题的方法。通过不断更新每个位置的最短路径,将空间复杂度从二维数组降低到一维,并直接在原数组上进行操作以进一步优化,达到O(1)的空间复杂度。两种解决方案被提出并进行了比较。

代码仓库Github | Leetcode solutions @doubleZ0108 from Peking University.

  • 解法1(T55% S22%): 动态规划

    dp[i][j]:从顶点走到(i,j)的最短路径长
    转移方程dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + t[i][j]
    初始化dp[0][0] = t[0][0]
    目标min(dp[0])

    • 注意下标索引不越界,在找上层元素时要防止越界,最终返回值也不要越界
    • 改进1: 三角形这个结构是一层层的,当前层的传递只跟上一层有关,因此只需要n维的两个数组进行dp即可,空间复杂度降到 O ( N ) O(N) O(N)
    • 改进2(T83% S66%): 直接用原数组进行动态规划,不需要开辟新空间 O ( 1 ) O(1) O(1)

6123D89F-D874-46F9-AA60-C55AEFF00CA6.jpeg

class Solution(object):
    def minimumTotal(self, triangle):
        """
        :type triangle: List[List[int]]
        :rtype: int
        """
        for i in range(1, len(triangle)):
            for j in range(len(triangle[i])):
                triangle[i][j] = min(triangle[i-1][min(j,len(triangle[i-1])-1)], triangle[i-1][max(j-1,0)]) + triangle[i][j]

        return min(triangle[len(triangle)-1])

    def otherSolution(self, triangle):
        # 解法1
        n = len(triangle)
        dp = []
        for row in triangle:
            dp.append([0 for _ in range(len(row))])
        dp[0][0] = triangle[0][0]

        for i in range(1, n):
            for j in range(len(triangle[i])):
                    dp[i][j] = min(dp[i-1][min(j,len(triangle[i-1])-1)], dp[i-1][max(j-1,0)]) + triangle[i][j]


        return min(dp[n-1])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

doubleZ0108

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值