代码仓库:Github | Leetcode solutions @doubleZ0108 from Peking University.
-
解法1(T55% S22%): 动态规划
dp[i][j]:从顶点走到(i,j)的最短路径长
转移方程:dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + t[i][j]
初始化:dp[0][0] = t[0][0]
目标:min(dp[0])- 注意下标索引不越界,在找上层元素时要防止越界,最终返回值也不要越界
- 改进1: 三角形这个结构是一层层的,当前层的传递只跟上一层有关,因此只需要n维的两个数组进行dp即可,空间复杂度降到 O ( N ) O(N) O(N)
- 改进2(T83% S66%): 直接用原数组进行动态规划,不需要开辟新空间 O ( 1 ) O(1) O(1)

class Solution(object):
def minimumTotal(self, triangle):
"""
:type triangle: List[List[int]]
:rtype: int
"""
for i in range(1, len(triangle)):
for j in range(len(triangle[i])):
triangle[i][j] = min(triangle[i-1][min(j,len(triangle[i-1])-1)], triangle[i-1][max(j-1,0)]) + triangle[i][j]
return min(triangle[len(triangle)-1])
def otherSolution(self, triangle):
# 解法1
n = len(triangle)
dp = []
for row in triangle:
dp.append([0 for _ in range(len(row))])
dp[0][0] = triangle[0][0]
for i in range(1, n):
for j in range(len(triangle[i])):
dp[i][j] = min(dp[i-1][min(j,len(triangle[i-1])-1)], dp[i-1][max(j-1,0)]) + triangle[i][j]
return min(dp[n-1])
优化动态规划解决三角形最短路径问题
本文探讨了一种使用动态规划解决三角形中最短路径问题的方法。通过不断更新每个位置的最短路径,将空间复杂度从二维数组降低到一维,并直接在原数组上进行操作以进一步优化,达到O(1)的空间复杂度。两种解决方案被提出并进行了比较。

被折叠的 条评论
为什么被折叠?



