计算机视觉
文章平均质量分 70
doubleZ0108
北京大学信息工程学院研究生在读
展开
-
tiny-cuda-nn环境配置
● python版本一定要大于3.8,尽量用conda装(自己试过本地安装python3.8.0, python3.9.14, python3.10都遇到了很多麻烦)● 直接clone github上的tinucudann可能会由于网络问题下不下来(因为要递归装cutlass,这个库有90多M)其中就这里的最后一步install容易报很多错误,可以参考【坑】● cuda11.3可能安不了高版本tinycudann。● torch版本要匹配tinycudann版本。可能不太行,后续会有问题。原创 2023-09-20 14:06:47 · 1759 阅读 · 0 评论 -
深度视觉中有关图像projection的代码改写cv2.remap() → F.grid_sample() | Numpy+cv2格式改为PyTorch格式
函数是个特殊例子,该函数通过xy两个数组重新采样图像,可以用来实现投影变换(warp,projection),在torch中与之对应的是。Numpy+cv2实现的代码迁移到PyTorch上往往不怎么需要改动,直接把np换成torch即可,但。以下以我的一个实际代码片段例子来直观介绍torch版本的代码重写。函数,但用法上有着一些不同。投影到另一个src视点。我的任务是将ref视点的。原创 2022-12-09 17:01:13 · 916 阅读 · 0 评论 -
Yolo训练自定义数据集
Yolov4环境搭建这里的环境与yolov3大致相同,差别主要在pre-train weights和conv连接Cloning and Building Darknetclone darknet from AlexeyAB’s famous repository,git clone https://github.com/AlexeyAB/darknetadjust the Makefile to enable OPENCV and GPU for darknetcd darknetsed -原创 2021-04-14 15:05:50 · 435 阅读 · 0 评论 -
目标识别数据集标注工具labelImg的安装和使用
???? https://github.com/tzutalin/labelImg安装步骤download from github repoinstall dependenciespip3 install pyqt5 lxmlbuild from resourcemacmake qt5py3win10pyqt5, pyrcc5 -o libs/resources.py resources.qrc准备classes.txt和images/运行qt工程python labe原创 2021-04-14 09:58:58 · 281 阅读 · 0 评论 -
多视角三维重建(MVS)的数据采集
开源数据集DTU数据集:针对MVS而专门拍摄并处理的室内数据集利用一个搭载可调节亮度灯的工业机器臂对一个物体进行多视角的拍摄,每个物体所拍的视角都经过严格控制,所以可以获取每个视角的相机内、外参数。数据集组成:124个不同的物体或场景,每个物体共拍摄49个视角,每个视角共有7种不同的亮度。每个物体或场景文件夹内部共有343个图片。每张影像的分辨率为1600×1200。(该数据集还包含带有深度图真值的训练影像集,可用于训练神经网络)MVS Data Set – 2014 | DTU Robot转载 2021-04-08 14:23:01 · 3595 阅读 · 6 评论 -
传统方法Colmap进行三维重建实践(GUI|命令行)
Colmap算法pipeline:Colmap安装在Ubuntu Docker中安装Colmap数据采集开源数据集DTU数据集:针对MVS而专门拍摄并处理的室内数据集利用一个搭载可调节亮度灯的工业机器臂对一个物体进行多视角的拍摄,每个物体所拍的视角都经过严格控制,所以可以获取每个视角的相机内、外参数。数据集组成:124个不同的物体或场景,每个物体共拍摄49个视角,每个视角共有7种不同的亮度。每个物体或场景文件夹内部共有343个图片。每张影像的分辨率为1600×1200。(该数据集还包含带原创 2021-04-06 17:43:00 · 4378 阅读 · 12 评论 -
在Ubuntu Docker中安装Colmap
使用Dockerfile直接安装使用Dockerfile在docker中安装Colmap之前首先要在本机上安装前置环境nvidia-docker安装使用nvcc —version确认你的cuda版本在DockerHub上查看nvidia/cuda可用的版本 Docker Hub Nvidia cuda推荐选择devel版本ubuntu系统版本推荐选择18.04,具体原因在分步安装中详述修改第一行的版本,例如我的cuda版本为11.2,第一行改写成FROM nvidia/cuda:1原创 2021-04-02 17:50:24 · 1733 阅读 · 0 评论 -
点云三角化基本流程
也叫做点云重建/点云网格化,使用一系列的网格来近似你和点云,在图形学中,一般使用三角网格或四角网格读取点云读入原始点云,从图中可以看出点云分辨率很高,会使得计算量很大;而且存在很多离群点和噪声点云下采样将原始点云稀疏化,降低计算量去除离群点三角化算法对离群点比较敏感点云平滑由于传感器自身的测量噪声,得到的点云会有些波动,通过计算法线的方法对点云进行平滑(类似图像处理中的图像平滑操作)点云三角化[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传原创 2021-02-04 17:20:59 · 1897 阅读 · 0 评论 -
解决ROS配置中cv_bridge问题
cv_bridge — opencv和ros连接起来的桥问题描述在Jetson Nano+ROS环境上catkin_make时出现cv_bridge问题如下CMake Error at /home/nano/catkin_ws/devel/share/cv_bridge/cmake/cv_bridgeConfig.cmake:113 (message): Project 'cv_bridge' specifies '/home/nano/catkin_ws/src/vision_openc.原创 2021-01-27 16:57:40 · 6113 阅读 · 8 评论 -
Plane Sweeping | 平面扫描
输入:一系列经过校准的照片以及拍摄相机对应的投影矩阵假设(定义):所有物体只有漫反射,有一个虚拟相机cam x,定义一个近平面和一个远平面,在这之间物体被一系列密集的平行平面划分核心思想如果平行平面足够密集,物体表面的任意一点p一定位于某平面Di上,可以看到p的相机看到点p必定是同一颜色;假设与p在同一平面的另一点p’,不位于物体表面,则投影到每个相机上呈现的颜色不同, 于是Plane Sweeping算法假设:对于平面上任意一点p,其如果投影到每个相机上的颜色均相同,那么可以说这个点很大.原创 2021-01-13 17:26:41 · 1577 阅读 · 0 评论 -
图像深度
存储每个像素所用的位数,用于度量图像的色彩分辨率(决定了彩色图像中最多颜色数|灰度图像中最大灰度等级)比如一幅单色图像,若每个像素有8位,则最大灰度数目为2^8 = 256一幅彩色图像RGB三通道的像素位数分别为4,4,2,则最大颜色数目为2^(4+4+2) = 1024,像素的深度为10位,每个像素可以是1024种颜色中的一种一幅画的尺寸是1024*768,深度为16,则它的数据量为1.5M[ (1024 * 768 * 16) / 8(byte)] / 1024(KB) / 1024(MB原创 2021-01-13 17:25:38 · 1549 阅读 · 0 评论 -
RGB-D|深度图像
深度图像 = 普通RGB三通道彩色图像 + Depth MapRGB图和深度图是配准的,像素之间一一对应Depth Map|深度图包含与视点场景对象表面距离有关信息的图像通道,通道本身类似于灰度图像,每个像素值是传感器测出距离物体的实际距离分类与相机距离成比例:较近的表面较暗; 其他表面较轻 与标称平面的距离相关:靠近焦平面的表面较暗; 远离焦平面的表面更轻 - 与标称平面的距离相关:靠近焦平面的表面较暗; 远离焦平面的表面更轻RGB-D相机结构光法Kinec..原创 2021-01-13 17:18:34 · 2125 阅读 · 0 评论 -
立体匹配|Stereo Matching
文章目录背景概念对极几何视觉模型基本流程匹配代价计算代价聚合视差计算视差优化References立体匹配也称 视差估计、 双目深度估计输入:一对在统一时刻捕捉的,经过 极线校正 的左右图像 Il和 Ir输出:参考图像(一般选为左图)每个像素对应的视差值对应的视差图d根据公式 z = b*f / d可获得深度图b: 两相机光心距离f: 相机光心到成像平面的焦距d: 两相机的视差背景概念对极几何对极几何|Epipolar Geometry_double_ZZZ的博客-CSDN博原创 2020-12-27 21:58:22 · 1800 阅读 · 0 评论 -
对极几何|Epipolar Geometry
对立体视觉建模的一种方法(约束),使得立体匹配问题有一个最优解X: 三维空间点(研究对象)C、C’: 两摄像机中心x、x’: X在两摄像机成像平面的投影点基线:两摄像机光心的连线 CC’对极点:一幅视图中另一个摄像机中心的像(基线与两成像平面的交点) e、e’对极平面:包含基线的平面(以基线为轴转动) CXC’对极线:对极平面与成像平面的交点 xe、xe'...原创 2020-12-27 21:54:36 · 306 阅读 · 0 评论 -
end-to-end|端到端
输入是原始数据,输出是最后的结果原来输入端不是直接的原始数据,而是在原始数据中提取的特征经典机器学习方式是以人类的先验知识将raw数据预处理成feature,然后对feature进行分类。分类结果十分取决于feature的好坏。所以过去的机器学习专家将大部分时间花费在设计feature上。那时的机器学习有个更合适的名字叫feature engineering 。Reference端到端(end-to-end)的含义_几何君的算法天空-CSDN博客_端到端是什么意思...原创 2020-12-27 21:52:41 · 156 阅读 · 0 评论 -
Homography|单应性
文章目录几何变换类型What is Homography?How to calculate a Homography ?理论推导工程实践ApplicationReference几何变换类型保距变换 isometry相似变换 similarity仿射变换 affine射影变换 projective -> homographyWhat is Homography?A Homography is a transformation ( a 3×3 matrix ) that maps th原创 2020-12-27 21:51:55 · 337 阅读 · 0 评论