题目
假设把某股票的价格按照时间先后顺序存储在数组中,请问买卖该股票一次可能获得的最大利润是多少?
示例 1:
输入: [7,1,5,3,6,4] 输出: 5 解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。 注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
示例 2:
输入: [7,6,4,3,1] 输出: 0 解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
思路
要求时间复杂度为o(n),暴力肯定不行,这类题想到动态规划没毛病,但是状态转移想了半天。
用dp[i]表示第i天所能获得的最大利润,那么第i天所能获得的最大利润从昨天获得的最大利润转移过来,要么今天能够获得最大利润比昨天能获得的最大利润多。
所以状态转移方程为:
dp[i] = max(dp[i-1],prices[i]-pre_min)
要记得使用pre_min记录前i-1天的最小价值,这样才能判断当前这天与pre_min差值表示今天卖出所能获得的最大利润。
class Solution:
def maxProfit(self, prices: List[int]) -> int:
n = len(prices)
if n<2:
return 0
pre_min = prices[0]
dp = [0]*n
for i in range(1,n):
dp[i] = max(dp[i-1],prices[i]-pre_min)
if pre_min>prices[i]:
pre_min = prices[i]
return dp[n-1]