M * N的方格,一个机器人从左上走到右下,只能向右或向下走。有多少种不同的走法?由于方法数量可能很大,只需要输出Mod 10^9 + 7的结果。
Input 第1行,2个数M,N,中间用空格隔开。(2 <= m,n <= 1000) Output 输出走法的数量。 Sample Input
2 3
Sample Output
3
看到这篇文章点击打开链接后,感觉不够详细,自己又总结了一下。
思路如下:
要求走到第m行第n列的方法数,我们可以首先要明白它的计算公式,记第m行第n列的点的坐标为(m,n),则公式就是从原点到(m-1,n)和(m,n-1)的方法数之和,如果不明白可以举例子试试。如(2,2)的方法是等于(1,2)与(2,1)的方法数的和。我这里用dp[i][j]记录方法数。接下来只需要便利所有点直到(m,n)为止,输出方法数即可。还有一点,我这里用const int定义mod=1e9+7;其实不定义指针的时候他和#define mod 1e9+7一样;区别就是转换为机器码的时候,define的内存是不会释放的,用到100次就存储100次。而const int相当于定义后不能改变其值的变量,每次用到时才分配空间。所以const int效率更高,相当于一种优化吧,毕竟用到的mod次数特别多。
AC代码如下:
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
long long dp[1005][1005];
const int mod=1e9+7;
int main()
{
int n,m,i,j;
scanf("%d%d",&n,&m);
memset(dp,0,sizeof(dp));
for(i=1;i<=n;i++)
{
for(j=1;j<=m;j++)
{
if(i==1&&j==1) dp[i][j]=1;
else dp[i][j]=(dp[i-1][j]+dp[i][j-1])%mod;
}
}
printf("%d\n",dp[n][m]);
return 0;
}
本文介绍了一个经典的机器人路径问题,即求解机器人从左上角到右下角的不同路径数量,并提供了一种使用动态规划解决该问题的有效方法。通过示例说明了如何计算路径数并考虑了大数值情况下的取模操作。
7736

被折叠的 条评论
为什么被折叠?



