4.1 不定积分的概念与性质
4.1.1 原函数与不定积分的概念
1. 原函数
定义4.1.1 设函数f(x)在区间I上有定义,若存在一个可导函数F(x),使得区间I上有
F'(x) = f(x) 或 dF(x) = f(x)dx
则称函数F(x)是f(x)在区间I上的一个原函数。
定理4.1.1 若F(x)是f(x)的一个原函数,则F(x) + c (c为任意常数) 仍是f(x)的原函数,而且f(x)的任一原函数都可以表示成F(x) + c 的形式。
2.不定积分定义
定义4.1.2 函数f(x)的全体原函数,称为f(x)的不定积分,记作
其中 称为积分号,x称为积分变量,f(x)称为被积函数,f(x)dx称为被积表达式。
3.不定积分的几何意义
函数f(x)的每一个原函数在直角坐标系xOy中的图形称为f(x)的一条积分曲线,f(x)的所有积分曲线的全体,称为f(x)的积分曲线族。
4.1.2 不定积分的性质
性质1
(1) 或
(2)或
性质2
被积函数中不为0的常数因子,可提到积分号外面,即
其中k为常数,且
性质3
有限个函数代数和的不定积分,等于各个函数不定积分的代数和,即
最低0.47元/天 解锁文章

1928

被折叠的 条评论
为什么被折叠?



