从零开始学数据分析之——《微积分》第四章 不定积分

4.1 不定积分的概念与性质

4.1.1 原函数与不定积分的概念

1. 原函数

定义4.1.1  设函数f(x)在区间I上有定义,若存在一个可导函数F(x),使得区间I上有

F'(x) = f(x) 或 dF(x) = f(x)dx

则称函数F(x)是f(x)在区间I上的一个原函数。

定理4.1.1  若F(x)是f(x)的一个原函数,则F(x) + c (c为任意常数) 仍是f(x)的原函数,而且f(x)的任一原函数都可以表示成F(x) + c 的形式。

2.不定积分定义

定义4.1.2  函数f(x)的全体原函数,称为f(x)的不定积分,记作

\int f\left ( x \right )dx

其中 \int称为积分号,x称为积分变量,f(x)称为被积函数,f(x)dx称为被积表达式。

3.不定积分的几何意义

函数f(x)的每一个原函数在直角坐标系xOy中的图形称为f(x)的一条积分曲线,f(x)的所有积分曲线的全体,称为f(x)的积分曲线族。

4.1.2 不定积分的性质

性质1 

(1)\left [ \int f\left ( x \right ) dx\right ]'=f\left ( x \right ) 或 d\left [ \int f\left ( x \right ) dx\right ]=f\left ( x \right )dx

(2)\int f'\left ( x \right )dx=f\left ( x \right )+c\int df\left ( x \right )=f\left ( x \right )+c

性质2

被积函数中不为0的常数因子,可提到积分号外面,即

\int kf\left ( x \right )dx=k\int f\left ( x \right )dx

其中k为常数,且k\neq 0.

性质3

有限个函数代数和的不定积分,等于各个函数不定积分的代数和,即

\int \left [ f_{1}\left ( x \right ) \pm f_{2}\left ( x \right ) \pm \cdot \cdot \cdot f_{n}\left ( x \right ) \right ]dx

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值