从零开始学数据分析之——《微积分》第四章 不定积分

4.1 不定积分的概念与性质

4.1.1 原函数与不定积分的概念

1. 原函数

定义4.1.1  设函数f(x)在区间I上有定义,若存在一个可导函数F(x),使得区间I上有

F'(x) = f(x) 或 dF(x) = f(x)dx

则称函数F(x)是f(x)在区间I上的一个原函数。

定理4.1.1  若F(x)是f(x)的一个原函数,则F(x) + c (c为任意常数) 仍是f(x)的原函数,而且f(x)的任一原函数都可以表示成F(x) + c 的形式。

2.不定积分定义

定义4.1.2  函数f(x)的全体原函数,称为f(x)的不定积分,记作

\int f\left ( x \right )dx

其中 \int称为积分号,x称为积分变量,f(x)称为被积函数,f(x)dx称为被积表达式。

3.不定积分的几何意义

函数f(x)的每一个原函数在直角坐标系xOy中的图形称为f(x)的一条积分曲线,f(x)的所有积分曲线的全体,称为f(x)的积分曲线族。

4.1.2 不定积分的性质

性质1 

(1)\left [ \int f\left ( x \right ) dx\right ]'=f\left ( x \right ) 或 d\left [ \int f\left ( x \right ) dx\right ]=f\left ( x \right )dx

(2)\int f'\left ( x \right )dx=f\left ( x \right )+c\int df\left ( x \right )=f\left ( x \right )+c

性质2

被积函数中不为0的常数因子,可提到积分号外面,即

\int kf\left ( x \right )dx=k\int f\left ( x \right )dx

其中k为常数,且k\neq 0.

性质3

有限个函数代数和的不定积分,等于各个函数不定积分的代数和,即

\int \left [ f_{1}\left ( x \right ) \pm f_{2}\left ( x \right ) \pm \cdot \cdot \cdot f_{n}\left ( x \right ) \right ]dx

=\int f_{1}\left ( x \right )dx\pm \int f_{2}\left ( x \right )dx\pm\cdot \cdot \cdot \pm \int f_{n}\left ( x \right )dx.

4.1.3 基本积分公式

4.2 积分法 

4.2.1 换元积分法

1.第一换元积分法

设所求不定积分为\int g\left ( x \right )dx,而g\left ( x \right )=f\left [ \varphi \left ( x \right ) \right ]\varphi '\left ( x \right ),且\int f\left ( x \right )dx=F\left ( x \right )+c,则

\int g\left ( x \right )dx=\int f\left [ \varphi \left ( x \right ) \right ]\varphi '\left ( x \right )dx=F\left [ \varphi \left ( x \right ) \right ]+c               (1)

要证式(1)成立,只要证\left \{ F\left [ \varphi \left ( x \right ) \right ] \right \}'=g\left ( x \right ) 即可。

2.第二换元积分法

x=\varphi \left ( t \right ) 是单调可导函数,且\varphi '\left ( t \right )\neq 0, 又\int f\left [ \varphi \left ( t \right ) \right ]\varphi '\left ( t \right )dt=F\left ( t \right )+c,则

\int f\left ( x \right )dx=F\left [ \varphi ^{-1} \left ( x \right )\right ]+c

4.2.2 分部积分法

u=u\left ( x \right ),v=v\left ( x \right ) 有连续的导函数,由函数乘积的导数公式得:

\left ( uv \right )'=u'v+uv',

即 uv'=\left ( uv \right )'-vu'.

于是uv'对x的积分为:

\int uv'dx=\int \left [ \left ( uv \right )'-vu' \right ]dx=\int \left ( uv \right )'dx-\int vu'dx=uv-\int u'dx,

即 \int idv=uv-\int vdu.

这就是分部积分公式,应用分部积分公式求不定积分的方法,称为不定积分的分部积分法。

4.3 有理函数的积分

有理函数(或称有理分式)是指由两个实系数多项式P\left ( x \right ) 与Q\left ( x \right ) 的商\frac{P\left ( x \right )}{Q\left ( x \right )} 所表示的函数,即

\frac{P\left ( x \right )}{Q\left ( x \right )}=\frac{a_{0}x^{n}+a_{1}x^{n-1}+\cdot \cdot \cdot +a_{n-1}x+a_{n}}{b_{0}x^{m}+b_{1}x^{m-1}+\cdot \cdot \cdot +b_{m-1}x+b_{m}}        (1)

其中m为正整数,n为非负整数,且a_{0}\neq 0,b_{0}\neq 0. 我们总假定P\left ( x \right )Q\left ( x \right )没有公因式。

m> n时,式(1)称为真分式。

m\leq n时,式(1)称为假分式。

下面来说明不定分式\int \frac{P\left ( x \right )}{Q\left ( x \right )}dx的求法:

首先,利用多项式除法,我们总可以将一个假分式化成一个多项式和一个真分式和的形式,因多项式的积分容易求得,所以我们只讨论有理真分式的积分。

下设\frac{P\left ( x \right )}{Q\left ( x \right )}为真分式,它的不定积分可如下求出:

将多项式Q\left ( x \right )在实数范围内分解成一次因式和二次因式的乘积:

Q\left ( x \right )=b_{0}\left ( x-a \right )^{\alpha }\cdot \cdot \cdot \left ( x-b \right )^{\beta }\left ( x^{2}+px+q \right )^{\gamma }\cdot \cdot \cdot \left ( x^{2}+rx+s \right )^{\mu }    (2)

其中p^{2}-4q< 0,\cdot \cdot \cdot ,r^{2}-4s< 0; 且\alpha ,\cdot \cdot \cdot ,\beta ,\lambda ,\cdot \cdot \cdot ,\mu 等都是正整数。

再按Q\left ( x \right )的分解结果式(2),将真分式\frac{P\left ( x \right )}{Q\left ( x \right )}分解为如下部分分式之和:

\frac{P\left ( x \right )}{Q\left ( x \right )}=\frac{A_{1}}{\left ( x-a \right )^{\alpha }}+\frac{A_{2}}{\left ( x-a \right )^{\alpha -1}}+\cdot \cdot \cdot +\frac{A_{\alpha }}{ x-a}+\cdot \cdot \cdot +\frac{B_{1}}{\left ( x-b \right )^{\beta }}+\frac{B_{2}}{\left ( x-b \right )^{\beta-1 }}+\cdot \cdot \cdot +\frac{B_{\beta }}{x-b} +\frac{M_{1}x+N_{1}}{\left ( x^{2}+px+q \right )^{\lambda }}+\frac{M_{2}x+N_{2}}{\left ( x^{2}+px+q \right )^{\lambda -1 }}+\cdot \cdot \cdot +\frac{M_{\lambda }x+N_{\lambda }}{x^{2}+px+q}+\cdot \cdot \cdot +\frac{R_{1}x+S_{1}}{\left ( x^{2}+rx+s \right )^{\mu }}+\frac{R_{2}x+S_{2}}{\left ( x^{2}+rx+s \right )^{\mu -1}}+\cdot \cdot \cdot+\frac{R_{\mu x}+S_{\mu }}{x^{2}+rx+s} .

其中A_{I},\cdot \cdot \cdot ,B_{I},M_{I},N_{I},\cdot \cdot \cdot ,R_{i} 及 S_{i} 等都是常数。

最后对部分分式进行逐项积分。

 

 

 

 

 

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值