避免使用for循环操作高维数组:numpy.apply_along_axis用法

场景

设想我有一列高维向量,读取之后的数据都是字符串变量,我需要把这些字符串数据转换为复数之后求绝对值
在这里插入图片描述

实际操作

在使用pd.read_csv()读取数据之后,将这一列数据转换为numpy数组

data = pd.read_csv(path,header=3).to_numpy() # header表示读取数据的时候要跳过前多少行,我这里需要调过录制的备注信息
print(data.shape) # [12800,1]

编写相关函数

convert_s_c = lambda x : np.abs(np.complex128(x[0].replace('i','j')))

针对每个元素,取到第一个元素就是对应的字符串,替换成j后才能正常的从str对象转换成np.complex复数对象,然后才能使用绝对值进行操作

np.apply_along_axis

ccc = np.apply_along_axis(convert_s_c,-1,ccc)

参数从左到右依次是,需要应用到对应元素的函数,操作的维度,被操作的numpy数组对象
打印形状之后发现正常工作,比写for循环更加可读
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dou_Huanmin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值