深度学习
文章平均质量分 54
学习深度学习的记录
Dou_Huanmin
这个作者很懒,什么都没留下…
展开
-
【多标签分类问题的样本挖掘】Pytorch中的TripletMarginLoss的样本挖掘
多数度量学习的代码都需要进行挖掘,样本挖掘过程就是把一个Batch中的所有样本,根据标签来划分成正样本和负样本。比如输入样本为[Batch,Embedding],对应的标签是[Batch,Class]原创 2024-05-25 00:43:25 · 230 阅读 · 0 评论 -
【深度学习图像处理】使用Kornia来更好的展示transform之后的图片
kornia是一个计算机视觉算法库,数据增强的模块非常好用,可以使用它的数据增强模块完全无缝的嵌入到pytorch中而且不会和torchvision中的transforms模块冲突以下展示我们的数据增强模块的实例。原创 2024-05-21 21:06:12 · 281 阅读 · 0 评论 -
在jupyter notebook中导入不到自己的conda环境的内核的解决办法
在这种情况下,您需要将IPython内核切换到正确的Conda环境中。模块,但是没有在IPython内核中安装该模块。您可以通过在终端中激活Conda环境并运行以下命令来安装IPython内核中的。如果您有多个Conda环境,并且您的IPython内核不在正确的环境中,那么您可能无法导入该环境中的。在某些情况下,您可能已经在Conda环境中安装了。IPython内核不在正确的环境中。IPython内核缺少其他依赖项。matplotlib`模块兼容。如果您在Conda镜像中安装了。原创 2023-04-12 15:56:01 · 379 阅读 · 0 评论 -
自动化使用GradCAM处理图片(用于ViT和swin的变体)附链接
用于可视化模型结果的 GradCAM 自动脚本。原创 2023-12-08 15:21:29 · 858 阅读 · 0 评论 -
似然函数与解析解
在给定模型和数据的情况下,最大化似然函数等价于最小化误差平方和,即最小化残差平方和。这也是最小二乘法的基本思想。对于线性回归模型,我们可以使用最小二乘法来估计模型参数。假设我们使用线性回归模型来拟合某个数据集,其中y是因变量,x是自变量,w和b是模型参数,ei是误差项,符合正态分布。RSSwbΣyi−xiw−b2RSSwbΣyi−xiw−b2我们的目标是找到最优的w和b,使得RSSwbRSS(w, b)RSSwb最小化。原创 2023-04-01 11:04:12 · 227 阅读 · 0 评论 -
分布数据并行计算(单机多卡)训练记录
首先,我们先把我们的pytorch版本提升到2.0.1,这样会防止很多不必要的报错(但这样的坏处就是我们没有办法使用nvidia-apex进行加速了,除非等到版本的更新。原创 2023-08-23 17:19:57 · 210 阅读 · 0 评论 -
传统的交叉熵函数如何通过平滑处理可以适用于多标签分类任务
一种常用的技术是标签平滑(Label Smoothing),它可以优化传统的交叉熵损失函数,使其适用于多标签分类问题。标签平滑通过将真实标签的概率分布从原来的one-hot编码改为一个平滑的分布,从而减少模型在训练过程中的过拟合风险。标签平滑的优点在于,它可以减少模型在训练过程中的过拟合风险,从而提高模型的泛化性能。传统的交叉熵损失函数通常用于多分类问题,而在多标签分类问题中,每个样本可能属于多个标签,因此需要使用一些新的技术来优化交叉熵损失函数。需要注意的是,标签平滑的平滑度。原创 2023-06-02 21:42:21 · 752 阅读 · 0 评论 -
图神经网络(GNN)综述的总结
每一个作为独立的一个属性,都有分别对应的MLP(多层感知机,也可以是其他的模型)对信息进行传递,经过学习后的图的结构是不变的,(对于每个节点,边,全局信息的结构也不会变,相当于图的节点,边, 全局信息都经过了一次学习),这里我们也必须重视图神经网络的另一个属性就是。(连接性可以理解为,节点之间属性的联系是边,图神经网络中连接性不只是权重矩阵,节点的连接性体现在每个节点的输入中,这个后续会说),这里虽然更新的了节点,边,全局信息的值,但是并没有提到连接性,如何保证连接性也得到更新呢。原创 2023-06-10 15:44:09 · 1225 阅读 · 0 评论 -
CNN总结
增加深度的同时也代表着训练更加收敛 , 损失函数对参数的求导 , 可能会因为很长的求导链式法则产生很多其他的数字 , 这些数字可能会很小,也可能会很大。所以跳跃连接就是我们直接把输入,添加到层快的一个输出中 , 比如说直接把第一个激活函数的输出,作为第3层的输入,这样我们就缓解了梯度消失的问题。我们会尝试在学习底部层的的时候避免变化顶部层,因为顶层开始收敛的比较快,训练持续的时候,顶部变化,底部变化,顶部收敛快,底部收敛慢。L1 范数 ———— 所有权重的绝对值的和 —————— 通过小因子进行缩放。原创 2023-05-05 21:28:21 · 170 阅读 · 0 评论 -
操作真实的数据集
【代码】操作真实的数据集。原创 2023-04-06 13:06:27 · 132 阅读 · 0 评论 -
线性回归 更简洁的实现方式
更简洁的线性回归实现。原创 2023-04-02 11:16:35 · 83 阅读 · 0 评论 -
从0开始的线性回归实现
def linreg(X , w , b) : # 线性变换,等价于nn.linear(in_dim , out_dim) return torch . matmul(X , w) + b。原创 2023-04-02 09:32:40 · 79 阅读 · 0 评论