信息内容安全 实验5 基于PageRank的社会网络分析

一、实验目的

  1. 掌握PageRank算法的一般计算流程; 
  2. 使用Python语言网页进行排序计算达到社会网络分析目的;

二、实验内容

  1. 计算每个网页的PR值
  2. 更改迭代次数观察迭代原理与PR值的变化规律

    迭代次数与PR值的变化规律取决于Pagerank算法的实现方式和输入数据的特征。一般而言,随着迭代次数的增加,PR值会逐渐收敛到稳定状态。具体来说,Pagerank的迭代次数和PR值的变化规律可以总结为以下几点:

    1)初始PR值的不同会影响迭代次数和PR值的变化规律。初始PR值越接近最终收敛的PR值,迭代次数越少,PR值的变化越小。

    2)当迭代次数较少时,PR值的变化趋势比较明显,随着迭代次数的增加,PR值的变化趋势逐渐趋于平稳。

    3)当迭代次数较多时,PR值的变化趋势几乎没有明显变化,PR值的变化范围也越来越小。

    4)在实际应用中,一般会设置一个迭代次数的上限,在达到该次数后停止迭代,此时的PR值即为最终收敛的PR值。

  3. 下图是某网站的超链接图的例子要求计算图中6个节点的PR值。

    #!/user/bin/env python3
    # -*- coding: utf-8 -*-
    import numpy as np
    
    M = np.array([[0,1,1,0,0,0],
                 [1,0,1,0,0,0],
                 [0,1,0,0,0,0],
                 [0,0,1,0,1,1],
                 [0,0,0,0,0,0],
                 [0,0,0,1,1,0],
                 ],dtype = float)
    
    # 1.定义转移矩阵
    def move_matrix(m):
        num = m.sum(axis = 0) # 统计每一列的总数,也就是网页的链接数
        return m/num  # 返回建立的转移矩阵
    
    # 2.定义V矩阵,初始的PR值
    def V(c):
        pr = np.ones((c.shape[0],1),dtype=float)/len(c) # 初始化PR值矩阵
        return pr
    
    # 3.迭代计算pagerank值
    def PR(p,m,v):
        i = 0
        while 1:
            v1 = p*np.dot(m,v) + (1-p) * v
            if np.abs((v-v1).all()) < 0.001:
                break
            else:
                v = v1
            i += 1
            if i==50:break
        print('求pr值迭代%d次'%(i))
        return v
    
    # 4.测试
    M1 = move_matrix(M)
    V1 = V(M1)
    a = 0.85
    print('最后迭代网页PR值结果为:\n',PR(a,M1,V1))
    
    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值