pandas对不同类型的column进行fillna

本文介绍在处理DataFrame时,如何根据不同数据类型正确填充缺失值的方法。包括两种实用策略:逐列判断和使用select_dtypes筛选对象类型列进行填充。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为dataframe中数据有不同类型,统一fillna可能会造成统一列数据类型不同的错误,有两种方法

方法1:逐一判断
for col in df:
	if df[col].dtype=="object":.....
方法2:用select_dtypes
df=df.select_dtypes(include='object').fillna('') 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值