雅克比迭代与高斯赛德尔迭代法

雅克比迭代和高斯赛德尔迭代法可以用来求线性方程组的近似解,与雅克比迭代不同的是,高斯赛德尔迭代法在第k+1次迭代求 x i k + 1 x_{i}^{k+1} xik+1时,会用到 x 1 k , x 2 k . . x i − 1 k x_{1}^{k},x_{2}^{k}..x_{i-1}^{k} x1k,x2k..xi1k 的值。
假设有如下的线性方程组:
a 11 ⋅ x 1 + a 12 ⋅ x 2 + … + a 1 n ⋅ x n = b 1 a 21 ⋅ x 1 + a 22 ⋅ x 2 + … + a 2 n ⋅ x n = b 2 ⋮ = ⋮ a n 1 ⋅ x 1 + a n 2 ⋅ x 2 + … + a n n ⋅ x n = b n . \begin{aligned} a_{11} \cdot x_{1}+a_{12} \cdot x_{2}+\ldots+a_{1 n} \cdot x_{n} &=b_{1} \\ a_{21} \cdot x_{1}+a_{22} \cdot x_{2}+\ldots+a_{2 n} \cdot x_{n} &=b_{2} \\ \vdots &=\vdots \\ a_{n 1} \cdot x_{1}+a_{n 2} \cdot x_{2}+\ldots+a_{n n} \cdot x_{n} &=b_{n} . \end{aligned} \\ a11x1+a12x2++a1nxna21x1+a22x2++a2nxnan1x1+an2x2++annxn=b1=b2==bn.
雅克比迭代求解公式如下:
x m ( k + 1 ) = 1 a m m ( b m − ∑ j ≠ m a m j x j ( k ) ) , 1 ≤ m ≤ n x_{m}^{(k+1)}=\frac{1}{a_{mm}}\left(b_{m}-\sum_{j \neq m} a_{m j} x_{j}^{(k)}\right), 1 \leq m \leq n \\ xm(k+1)=amm1bmj=mamjxj(k),1mn
高斯赛德尔迭代求解公式如下:
x m k + 1 = 1 a m m ( b m − ∑ j = 1 m − 1 a m j ⋅ x j k + 1 − ∑ j = m + 1 n a m j ⋅ x j k ) , 1 ≤ m ≤ n x_{m}^{k+1}=\frac{1}{a_{m m}}\left(b_{m}-\sum_{j=1}^{m-1} a_{m j} \cdot x_{j}^{k+1}-\sum_{j=m+1}^{n} a_{m j} \cdot x_{j}^{k}\right), \quad 1 \leq m \leq n \\ xmk+1=amm1(bmj=1m1amjxjk+1j=m+1namjxjk),1mn

该表达式的 x m x_{m} xm由线性方程组的第m行转换而来,同时考虑到了在计算 x m k + 1 x_{m}^{k+1} xmk+1时, x 1 k + 1 , x 2 k + 1 . . x m − 1 k + 1 x_{1}^{k+1},x_{2}^{k+1}..x_{m-1}^{k+1} x1k+1,x2k+1..xm1k+1已经迭代产生的情况,利用最新的参数进行迭代更新。

可以看到在两种迭代方法的求解公式中, x m x_{m} xm 的计算需要除以其系数 a m m a_{mm} amm ,所以高斯赛德尔迭代法要求线性方程组的主对角矩阵元素非0。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值