HDU 5354 Bipartite Graph 分治,并查集

题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=5354

题意:给你n个点m条边,问对于每一个点,删去它之后的图是否是二分图。( 1<=n,m<=105

思路:这题的代码是看了南神的博客之后才懂得,代码也参考了他的代码。南神的题解

因为要判断每一个点,而且一旦一个点之外的几个点形成了奇环的话这个点一定就是No,所以用分治来解。先判断每一段之外的点是否会成为奇环,如果是的话,这一段就全是No,反之就把这些点放到并查集里并记录,然后分治当前段,直到分治进行到单个点,分治结束后把并查集还原。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<vector>
using namespace std;
#define MS(x,y) memset(x,y,sizeof(x)) 
#define MP(x,y) make_pair(x,y)
#define lowbit(x) (x&(-x))
typedef long long LL;
typedef pair<int,int> P;
inline void fre1(){freopen("input.txt","r",stdin);/*freopen("output.txt","w",stdout);*/}
inline void fre2(){fclose(stdin);/*fclose(stdout);*/}
const int MAXN=1e5+5;
const double EPS=1e-8;
vector<P> vec[MAXN<<2];
int col[MAXN],siz[MAXN],f[MAXN],ans[MAXN];
int n,m;

inline bool isin(int a,int l,int r){
    return l<=a&&a<=r;
}
void process(int l,int r,int rt,vector<P> &V);
P findfa(int x){
    int ret=x,w=0;
    for(;ret!=f[ret];ret=f[ret]) w^=col[ret];
    w^=col[ret];
    return MP(ret,w);
}
void solve(int l,int r,int rt){
    if(l==r){
        ans[l]=1;
        return ;
    }
    int m=(l+r)>>1;
    vec[rt<<1].clear();
    vec[rt<<1|1].clear();
    vector<P> tp[2];
    int len=vec[rt].size();
    for(int i=0;i<len;++i){
        int u=vec[rt][i].first,v=vec[rt][i].second;
        if(isin(u,l,m)||isin(v,l,m)) vec[rt<<1].push_back(vec[rt][i]);
        else tp[0].push_back(vec[rt][i]);
        if(isin(u,m+1,r)||isin(v,m+1,r)) vec[rt<<1|1].push_back(vec[rt][i]);
        else tp[1].push_back(vec[rt][i]);
    }
    process(l,m,rt<<1,tp[0]);
    process(m+1,r,rt<<1|1,tp[1]);
}
void process(int l,int r,int rt,vector<P> &V){
    P fu,fv;
    vector<P> ret;
    int len=V.size();
    bool flag=false;
    for(int i=0;i<len;++i){
        int u=V[i].first,v=V[i].second;
        fu=findfa(u);
        fv=findfa(v);
        if(fu.first==fv.first){
            if(fu.second==fv.second){
                flag=true;
                break;
            }
        }
        else{
            int t1=fu.first,t2=fv.first;
            if(siz[t1]<siz[t2]) swap(t1,t2);
            int t3=fu.second^fv.second;
            f[t2]=t1;
            siz[t1]+=siz[t2];
            col[t2]^=t3;
            ret.push_back(MP(t2,t3));
        }
    }
    if(flag){
        for(int i=l;i<=r;++i) ans[i]=0;
    }
    else solve(l,r,rt);
    for(int i=ret.size()-1;i>=0;--i){
        int u=ret[i].first;
        siz[f[u]]-=siz[u];
        f[u]=u;
        col[u]^=ret[i].second;
    }
}

int main()
{
    int T,u,v;
    scanf("%d",&T);
    while(T--){
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;++i) col[i]=1,siz[i]=1,f[i]=i;
        vec[1].clear();
        for(int i=0;i<m;++i){
            scanf("%d%d",&u,&v);
            if(u>v) swap(u,v);
            vec[1].push_back(MP(u,v));
        }
        solve(1,n,1);
        for(int i=1;i<=n;++i) putchar(ans[i]+'0');
        putchar(10);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值