deep learning AI book -chapter05 machine learning basics --notes

本文是《深度学习》一书中第5章的学习笔记,主要讨论了贝叶斯统计的基础概念。贝叶斯派将参数视为随机变量,使用先验概率分布p(θ)来描述对参数的知识。贝叶斯估计与极大似然估计的区别在于前者使用完整的参数分布,后者依赖点估计。文中还介绍了贝叶斯线性回归的应用,展示如何利用高斯分布来表示参数,并推导出与权重衰退方法一致的最优解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Deep learning book chapter05 – notes

5.6 Bayesian Statistics

频率派认为θ的真实值是确定而未知的:他们的方法是基于对一个单一变量θ的点估计而后续的工作都是基于那个单一的估计进行的。
而贝叶斯派则将θ的所有可能取值考虑在内,然后做预测。(他们认为θ数据集本身是可以直接观察的,所以并不是随机的,而相对的,参数值的真实值却是未知的或者不确定的。因此将θ表示为一个随机变量!)

在观察数据之前,我们通常会通过一个先验概率分布p(θ)来给出我们关于θ的知识。对于不同的样本,面向不同的应用我们可能会选择不同的先验分布:比如可能的均匀分布,或者是有着较小的协方差的,或者是一个接近于常量的函数。

与极大似然估计不同的是:极大似然法使用的是一个点估计来进行预测;而贝叶斯估计则使用的是一个完整的θ参数的分布;

p(x(m+1)|x(1),,x(m))=p(x(m+1)|θ)p(θ)|x(1),,x(m))dθ

以上表达式的含义就是:在已知样本数据的条件下,预测样本m+1的结果是根据θ的积分来得;其中首先由已知样本1~m推出θ的条件分布,然后在相应的条件分布下求出预测样本m+1的条件期望(对每一个θ的取值m+1的概率,相应的积分,就得到了m+1的条件概率)。
如果在观察完所有的样本数据之后θ的值还是不确定的,那么这种不确定性将会被带入到所有的预测值中去。

频率派的最大似然估计,根据点估计的方差来对新的样本的适应性进行评估。而贝叶斯方法,则是将新的样本数据将入到积分当中直接进行计算,从而也避免的上溢的问题。

贝叶斯方法使用积分作为一种对概率法则的应用;而频率机制则是将样本数据集的所有信息都放入一个点估计当中,然后基于这个点估计进行评估。

贝叶斯方法对先验概率分布的选择存在着主观因素:因而对最终的预测也存在着影响。


在极大似然法那一节中已经证明了:极大似然法与MSE(Mean Squared Error)均方误差法得到的θ结果是一致的。

下面给出了一个贝叶斯应用实例:贝叶斯线性回归

单个样本参数向量对标量y的映射:

y^=wTx

如果给定杨本数据集 (X(train),y(train)) 那么就有:
y^(train)=X(train)w

那么如果使用一个高斯条件分布来表示的话则有:
p(y(train)|X(train),w)=N(y(train);X(train)w,I)exp(12(y(train)X(train))T(y(train)X(train)))

我们这类为了方便计算:令样本的协方差矩阵为I。

对于一个实值参数θ,我们通常使用一个高斯分布来表示,这里的参数是: w

p(w)=N(w;μ0,Λ0)exp(12(wμ0)TΛ1(wμ0))

这样有了参数的先验估计之后就可以得到其后验分布:
p(w|X,y)p(y|X,w)p(w)     (5.74)exp(12(yXw)T(yXw))exp(12(wμ0)TΛ1(wμ0))

以上式5.74中:我们有

p(w|X,y)=p(w,y|X)p(y|X)=p(y|w,X)p(w|X)p(y|X)=p(y|w,X)p(w)p(y|X)

其中:我们假设参数w与样本X相互独立;那么显然p(w|X) = p(w);然后1/p(y|X) 为已知系数,也就是p(y|X)的值是根据样本来的,是确定的,但是因为它与我们的目标w无关,所以不关心。

我们可以定义: Λm=(XTX+Λ10)1 并且: μm=Λm(XTy+Λ10μ0)
从而可以有:

p(w|X,y)exp(12(wμm)TΛ1m(wμm)+12μTmΛ1mμm)exp(12(wμm)TΛ1m(wμm))(5.78)

那么在之前推导求线性回归的MSE最优解时,我们最终得到:

w=(XTX)1(XTy)

将此式与式5.78对比可以得知:
  如果我们将 μ0 设为0,并且令 Λ0=1αI ,那么 μm 将给出一致的w的估计与频率派的 J(w)=MSEw+λwtw 也就是权重衰退(weight decay)方法得到的结果是一致的!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值