在机器学习中,特别是学习到关于概率/似然估计方面的内容,经常看到类似P(Y=y|x;θ)的表达,对于这个概率表达式一直理解的不清楚,于是在网上查阅资料,整理如下:
我们先来逐个分析里面的每一个变量。对于符号P(Y=y|x;θ),Y表示一个随机变量,那么x和θ呢?则分别是两个随机变量X和Θ的取值为x和θ,所以,换句话说,P(Y=y|x;θ)实际上就是P(Y=y|X=x;Θ=θ)的一个简写形式,P(Y=y|x;θ)的意思即为在X = x;Θ = θ的条件下,Y = y 的概率。
在机器学习中,特别是学习到关于概率/似然估计方面的内容,经常看到类似P(Y=y|x;θ)的表达,对于这个概率表达式一直理解的不清楚,于是在网上查阅资料,整理如下:
我们先来逐个分析里面的每一个变量。对于符号P(Y=y|x;θ),Y表示一个随机变量,那么x和θ呢?则分别是两个随机变量X和Θ的取值为x和θ,所以,换句话说,P(Y=y|x;θ)实际上就是P(Y=y|X=x;Θ=θ)的一个简写形式,P(Y=y|x;θ)的意思即为在X = x;Θ = θ的条件下,Y = y 的概率。